Bridging Gaps in Natural Language Processing for Yorùbá: A Systematic Review of a Decade of Progress and Prospects
- URL: http://arxiv.org/abs/2502.17364v1
- Date: Mon, 24 Feb 2025 17:41:48 GMT
- Title: Bridging Gaps in Natural Language Processing for Yorùbá: A Systematic Review of a Decade of Progress and Prospects
- Authors: Toheeb A. Jimoh, Tabea De Wille, Nikola S. Nikolov,
- Abstract summary: This review highlights the scarcity of annotated corpora, limited availability of pre-trained language models, and linguistic challenges like tonal complexity and diacritic dependency as significant obstacles.<n>The findings reveal a growing body of multilingual and monolingual resources, even though the field is constrained by socio-cultural factors such as code-switching and desertion of language for digital usage.
- Score: 0.6554326244334868
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Natural Language Processing (NLP) is becoming a dominant subset of artificial intelligence as the need to help machines understand human language looks indispensable. Several NLP applications are ubiquitous, partly due to the myriads of datasets being churned out daily through mediums like social networking sites. However, the growing development has not been evident in most African languages due to the persisting resource limitation, among other issues. Yor\`ub\'a language, a tonal and morphologically rich African language, suffers a similar fate, resulting in limited NLP usage. To encourage further research towards improving this situation, this systematic literature review aims to comprehensively analyse studies addressing NLP development for Yor\`ub\'a, identifying challenges, resources, techniques, and applications. A well-defined search string from a structured protocol was employed to search, select, and analyse 105 primary studies between 2014 and 2024 from reputable databases. The review highlights the scarcity of annotated corpora, limited availability of pre-trained language models, and linguistic challenges like tonal complexity and diacritic dependency as significant obstacles. It also revealed the prominent techniques, including rule-based methods, among others. The findings reveal a growing body of multilingual and monolingual resources, even though the field is constrained by socio-cultural factors such as code-switching and desertion of language for digital usage. This review synthesises existing research, providing a foundation for advancing NLP for Yor\`ub\'a and in African languages generally. It aims to guide future research by identifying gaps and opportunities, thereby contributing to the broader inclusion of Yor\`ub\'a and other under-resourced African languages in global NLP advancements.
Related papers
- Towards Systematic Monolingual NLP Surveys: GenA of Greek NLP [2.3499129784547663]
This study introduces a generalizable methodology for creating systematic and comprehensive monolingual NLP surveys.<n>We apply this methodology to Greek NLP (2012-2023), providing a comprehensive overview of its current state and challenges.
arXiv Detail & Related papers (2024-07-13T12:01:52Z) - A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers [51.8203871494146]
The rapid development of Large Language Models (LLMs) demonstrates remarkable multilingual capabilities in natural language processing.
Despite the breakthroughs of LLMs, the investigation into the multilingual scenario remains insufficient.
This survey aims to help the research community address multilingual problems and provide a comprehensive understanding of the core concepts, key techniques, and latest developments in multilingual natural language processing based on LLMs.
arXiv Detail & Related papers (2024-05-17T17:47:39Z) - The Ghanaian NLP Landscape: A First Look [9.17372840572907]
Ghanaian languages, in particular, face an alarming decline, with documented extinction and several at risk.
This study pioneers a comprehensive survey of Natural Language Processing (NLP) research focused on Ghanaian languages.
arXiv Detail & Related papers (2024-05-10T21:39:09Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
State-of-the-art natural language processing (NLP) models are trained on massive training corpora, and report a superlative performance on evaluation datasets.<n>This survey delves into an important attribute of these datasets: the dialect of a language.<n>Motivated by the performance degradation of NLP models for dialectal datasets and its implications for the equity of language technologies, we survey past research in NLP for dialects in terms of datasets, and approaches.
arXiv Detail & Related papers (2024-01-11T03:04:38Z) - Quantifying the Dialect Gap and its Correlates Across Languages [69.18461982439031]
This work will lay the foundation for furthering the field of dialectal NLP by laying out evident disparities and identifying possible pathways for addressing them through mindful data collection.
arXiv Detail & Related papers (2023-10-23T17:42:01Z) - NusaWrites: Constructing High-Quality Corpora for Underrepresented and
Extremely Low-Resource Languages [54.808217147579036]
We conduct a case study on Indonesian local languages.
We compare the effectiveness of online scraping, human translation, and paragraph writing by native speakers in constructing datasets.
Our findings demonstrate that datasets generated through paragraph writing by native speakers exhibit superior quality in terms of lexical diversity and cultural content.
arXiv Detail & Related papers (2023-09-19T14:42:33Z) - Bootstrapping NLP tools across low-resourced African languages: an
overview and prospects [1.5736899098702972]
bootstrapping tools for one African language from another.
bootstrapping grammars for geographically distant languages has been shown to still have positive outcomes for morphology and rules or grammar-based natural language generation.
arXiv Detail & Related papers (2022-10-21T15:16:45Z) - Systematic Inequalities in Language Technology Performance across the
World's Languages [94.65681336393425]
We introduce a framework for estimating the global utility of language technologies.
Our analyses involve the field at large, but also more in-depth studies on both user-facing technologies and more linguistic NLP tasks.
arXiv Detail & Related papers (2021-10-13T14:03:07Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
We present AM2iCo, Adversarial and Multilingual Meaning in Context.
It aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts.
Results reveal that current SotA pretrained encoders substantially lag behind human performance.
arXiv Detail & Related papers (2021-04-17T20:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.