Interpretable Dual-Filter Fuzzy Neural Networks for Affective Brain-Computer Interfaces
- URL: http://arxiv.org/abs/2502.17445v1
- Date: Wed, 29 Jan 2025 14:31:57 GMT
- Title: Interpretable Dual-Filter Fuzzy Neural Networks for Affective Brain-Computer Interfaces
- Authors: Xiaowei Jiang, Yanan Chen, Nikhil Ranjan Pal, Yu-Cheng Chang, Yunkai Yang, Thomas Do, Chin-Teng Lin,
- Abstract summary: We present iFuzzyAffectDuo, a novel model that integrates a dual-filter fuzzy neural network architecture for improved detection and interpretation of emotional states.<n>We validate our approach across three neuroimaging datasets using functional Near-Infrared Spectroscopy (fNIRS) and Electroencephalography (EEG)
- Score: 25.445687764717167
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fuzzy logic provides a robust framework for enhancing explainability, particularly in domains requiring the interpretation of complex and ambiguous signals, such as brain-computer interface (BCI) systems. Despite significant advances in deep learning, interpreting human emotions remains a formidable challenge. In this work, we present iFuzzyAffectDuo, a novel computational model that integrates a dual-filter fuzzy neural network architecture for improved detection and interpretation of emotional states from neuroimaging data. The model introduces a new membership function (MF) based on the Laplace distribution, achieving superior accuracy and interpretability compared to traditional approaches. By refining the extraction of neural signals associated with specific emotions, iFuzzyAffectDuo offers a human-understandable framework that unravels the underlying decision-making processes. We validate our approach across three neuroimaging datasets using functional Near-Infrared Spectroscopy (fNIRS) and Electroencephalography (EEG), demonstrating its potential to advance affective computing. These findings open new pathways for understanding the neural basis of emotions and their application in enhancing human-computer interaction.
Related papers
- Functional connectomes of neural networks [1.272769504154474]
We propose a novel approach that bridges neural networks and human brain functions by leveraging brain-inspired techniques.
Our approach offers scalable ways to characterize topology of large neural networks using stable statistical and machine learning techniques.
arXiv Detail & Related papers (2024-12-18T03:46:30Z) - A Fuzzy-based Approach to Predict Human Interaction by Functional Near-Infrared Spectroscopy [25.185426359719454]
The paper introduces a Fuzzy-based Attention (Fuzzy Attention Layer) mechanism, a novel computational approach to interpretability and efficacy of neural models in psychological research.<n>By leveraging fuzzy logic, the Fuzzy Attention Layer is capable of learning and identifying interpretable patterns of neural activity.
arXiv Detail & Related papers (2024-09-26T09:20:12Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
We propose Brain Masked Auto-Encoder (BrainMAE) for learning representations directly from fMRI time-series data.
BrainMAE consistently outperforms established baseline methods by significant margins in four distinct downstream tasks.
arXiv Detail & Related papers (2024-06-24T19:16:24Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Unidirectional brain-computer interface: Artificial neural network
encoding natural images to fMRI response in the visual cortex [12.1427193917406]
We propose an artificial neural network dubbed VISION to mimic the human brain and show how it can foster neuroscientific inquiries.
VISION successfully predicts human hemodynamic responses as fMRI voxel values to visual inputs with an accuracy exceeding state-of-the-art performance by 45%.
arXiv Detail & Related papers (2023-09-26T15:38:26Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Interpretable Graph Neural Networks for Connectome-Based Brain Disorder
Analysis [31.281194583900998]
We propose an interpretable framework to analyze disorder-specific Regions of Interest (ROIs) and prominent connections.
The proposed framework consists of two modules: a brain-network-oriented backbone model for disease prediction and a globally shared explanation generator.
arXiv Detail & Related papers (2022-06-30T08:02:05Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
We introduce a new classification system that utilizes brain connectivity with a CNN and validate its effectiveness via the emotional video classification.
The level of concentration of the brain connectivity related to the emotional property of the target video is correlated with classification performance.
arXiv Detail & Related papers (2021-01-18T13:28:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.