Multimodal Sleep Stage and Sleep Apnea Classification Using Vision Transformer: A Multitask Explainable Learning Approach
- URL: http://arxiv.org/abs/2502.17486v1
- Date: Tue, 18 Feb 2025 15:48:06 GMT
- Title: Multimodal Sleep Stage and Sleep Apnea Classification Using Vision Transformer: A Multitask Explainable Learning Approach
- Authors: Kianoosh Kazemi, Iman Azimi, Michelle Khine, Rami N. Khayat, Amir M. Rahmani, Pasi Liljeberg,
- Abstract summary: We propose a 1D-Vision Transformer for simultaneous classification of sleep stages and sleep disorders.<n>The proposed method shows an overall accuracy (cohen's Kappa) of 78% (0.66) for five-stage sleep classification and 74% (0.58) for sleep apnea classification.
- Score: 1.7765306045990206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sleep is an essential component of human physiology, contributing significantly to overall health and quality of life. Accurate sleep staging and disorder detection are crucial for assessing sleep quality. Studies in the literature have proposed PSG-based approaches and machine-learning methods utilizing single-modality signals. However, existing methods often lack multimodal, multilabel frameworks and address sleep stages and disorders classification separately. In this paper, we propose a 1D-Vision Transformer for simultaneous classification of sleep stages and sleep disorders. Our method exploits the sleep disorders' correlation with specific sleep stage patterns and performs a simultaneous identification of a sleep stage and sleep disorder. The model is trained and tested using multimodal-multilabel sensory data (including photoplethysmogram, respiratory flow, and respiratory effort signals). The proposed method shows an overall accuracy (cohen's Kappa) of 78% (0.66) for five-stage sleep classification and 74% (0.58) for sleep apnea classification. Moreover, we analyzed the encoder attention weights to clarify our models' predictions and investigate the influence different features have on the models' outputs. The result shows that identified patterns, such as respiratory troughs and peaks, make a higher contribution to the final classification process.
Related papers
- What Radio Waves Tell Us about Sleep [34.690382091650314]
We develop an advanced machine learning algorithm for passively monitoring sleep and nocturnal breathing from radio waves reflected off people while asleep.
We show that the model captures the sleep hypnogram (with an accuracy of 81% for 30-second epochs categorized into Wake, Light Sleep, Deep Sleep, or REM) and detects sleep apnea (AUROC = 0.88)
The model uncovers informative interactions between sleep stages and a range of diseases including neurological, psychiatric, cardiovascular, and immunological disorders.
arXiv Detail & Related papers (2024-05-20T02:41:21Z) - Multimodal Sleep Apnea Detection with Missing or Noisy Modalities [1.3518297878940662]
We propose a comprehensive pipeline aiming to compensate for the missing or noisy modalities when performing sleep apnea detection.
Our experiments show that the proposed model outperforms other state-of-the-art approaches in sleep apnea detection.
arXiv Detail & Related papers (2024-02-24T16:29:36Z) - Domain Invariant Representation Learning and Sleep Dynamics Modeling for
Automatic Sleep Staging [6.86283473936335]
We propose a neural network based sleep staging model, DREAM, to learn domain generalized representations from physiological signals and models sleep dynamics.
DREAM learns sleep related and subject invariant representations from diverse subjects' sleep signals and models sleep dynamics by capturing interactions between sequential signal segments and between sleep stages.
We conducted a comprehensive empirical study to demonstrate the superiority of DREAM, including sleep stage prediction experiments, a case study, the usage of unlabeled data, and uncertainty.
arXiv Detail & Related papers (2023-12-06T00:28:08Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Sleep Stage Classification Using a Pre-trained Deep Learning Model [0.0]
"EEGMobile" is a machine-learning model that learns from electroencephalogram (EEG) spectrograms of brain signals.
The model achieved an accuracy of 86.97% on a publicly available dataset named "Sleep-EDF20", outperforming other models proposed by different researchers.
arXiv Detail & Related papers (2023-09-12T23:02:19Z) - Sleep Activity Recognition and Characterization from Multi-Source
Passively Sensed Data [67.60224656603823]
Sleep Activity Recognition methods can provide indicators to assess, monitor, and characterize subjects' sleep-wake cycles and detect behavioral changes.
We propose a general method that continuously operates on passively sensed data from smartphones to characterize sleep and identify significant sleep episodes.
Thanks to their ubiquity, these devices constitute an excellent alternative data source to profile subjects' biorhythms in a continuous, objective, and non-invasive manner.
arXiv Detail & Related papers (2023-01-17T15:18:45Z) - Heterogeneous Hidden Markov Models for Sleep Activity Recognition from
Multi-Source Passively Sensed Data [67.60224656603823]
Psychiatric patients' passive activity monitoring is crucial to detect behavioural shifts in real-time.
Sleep Activity Recognition constitutes a behavioural marker to portray patients' activity cycles.
Mobile passively sensed data captured from smartphones constitute an excellent alternative to profile patients' biorhythm.
arXiv Detail & Related papers (2022-11-08T17:29:40Z) - Continual learning benefits from multiple sleep mechanisms: NREM, REM,
and Synaptic Downscaling [51.316408685035526]
Learning new tasks and skills in succession without losing prior learning is a computational challenge for both artificial and biological neural networks.
Here, we investigate how modeling three distinct components of mammalian sleep together affects continual learning in artificial neural networks.
arXiv Detail & Related papers (2022-09-09T13:45:27Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
Sleep problems are one of the major diseases all over the world.
Basic tool used by specialists is the Polysomnogram, which is a collection of different signals recorded during sleep.
Specialists have to score the different signals according to one of the standard guidelines.
arXiv Detail & Related papers (2021-03-30T09:59:56Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
We designed a single deep neural network architecture to jointly detect sleep events in a polysomnogram.
The performance of the model was quantified by F1, precision, and recall scores, and by correlating index values to clinical values.
arXiv Detail & Related papers (2021-01-07T13:08:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.