Multimodal Bearing Fault Classification Under Variable Conditions: A 1D CNN with Transfer Learning
- URL: http://arxiv.org/abs/2502.17524v1
- Date: Sun, 23 Feb 2025 19:11:25 GMT
- Title: Multimodal Bearing Fault Classification Under Variable Conditions: A 1D CNN with Transfer Learning
- Authors: Tasfiq E. Alam, Md Manjurul Ahsan, Shivakumar Raman,
- Abstract summary: Bearing failures constitute up to 90% of mechanical faults.<n>This study proposes a multimodal bearing fault classification approach.<n>It relies on vibration and motor phase current signals within a one-dimensional convolutional neural network (1D CNN) framework.
- Score: 0.46085106405479537
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bearings play an integral role in ensuring the reliability and efficiency of rotating machinery - reducing friction and handling critical loads. Bearing failures that constitute up to 90% of mechanical faults highlight the imperative need for reliable condition monitoring and fault detection. This study proposes a multimodal bearing fault classification approach that relies on vibration and motor phase current signals within a one-dimensional convolutional neural network (1D CNN) framework. The method fuses features from multiple signals to enhance the accuracy of fault detection. Under the baseline condition (1,500 rpm, 0.7 Nm load torque, and 1,000 N radial force), the model reaches an accuracy of 96% with addition of L2 regularization. This represents a notable improvement of 2% compared to the non-regularized model. In addition, the model demonstrates robust performance across three distinct operating conditions by employing transfer learning (TL) strategies. Among the tested TL variants, the approach that preserves parameters up to the first max-pool layer and then adjusts subsequent layers achieves the highest performance. While this approach attains excellent accuracy across varied conditions, it requires more computational time due to its greater number of trainable parameters. To address resource constraints, less computationally intensive models offer feasible trade-offs, albeit at a slight accuracy cost. Overall, this multimodal 1D CNN framework with late fusion and TL strategies lays a foundation for more accurate, adaptable, and efficient bearing fault classification in industrial environments with variable operating conditions.
Related papers
- Improved YOLOv7 model for insulator defect detection [24.775038970508078]
This paper proposes an improved YOLOv7 model for multi-type insulator defect detection.<n>The proposed model exhibits enhancements across various performance metrics.
arXiv Detail & Related papers (2025-02-11T02:09:30Z) - An Improved Fault Diagnosis Strategy for Induction Motors Using Weighted Probability Ensemble Deep Learning [1.438310481395707]
Early detection of faults in induction motors is crucial for ensuring uninterrupted operations in industrial settings.<n>WPEDL methodology is tailored for effectively diagnosing induction motor faults using high-dimensional data extracted from vibration and current features.<n>Our proposed model outperforms other models, achieving an accuracy of 98.89%.
arXiv Detail & Related papers (2024-12-24T08:02:44Z) - Robust Fine-tuning of Zero-shot Models via Variance Reduction [56.360865951192324]
When fine-tuning zero-shot models, our desideratum is for the fine-tuned model to excel in both in-distribution (ID) and out-of-distribution (OOD)
We propose a sample-wise ensembling technique that can simultaneously attain the best ID and OOD accuracy without the trade-offs.
arXiv Detail & Related papers (2024-11-11T13:13:39Z) - DKDL-Net: A Lightweight Bearing Fault Detection Model via Decoupled Knowledge Distillation and Low-Rank Adaptation Fine-tuning [0.0]
This paper proposes a lightweight bearing fault diagnosis model DKDL-Net to solve these challenges.
The model is trained on the CWRU data set by decoupling knowledge distillation and low rank adaptive fine tuning.
Experiments show that DKDL-Net achieves 99.48% accuracy in computational complexity on the test set while maintaining model performance.
arXiv Detail & Related papers (2024-06-10T09:09:08Z) - Predicting Overtakes in Trucks Using CAN Data [51.28632782308621]
We investigate the detection of truck overtakes from CAN data.
Our analysis covers up to 10 seconds before the overtaking event.
We observe that the prediction scores of the overtake class tend to increase as we approach the overtake trigger.
arXiv Detail & Related papers (2024-04-08T17:58:22Z) - Test-Time Adaptation Induces Stronger Accuracy and Agreement-on-the-Line [65.14099135546594]
Recent test-time adaptation (TTA) methods drastically strengthen the ACL and AGL trends in models, even in shifts where models showed very weak correlations before.
Our results show that by combining TTA with AGL-based estimation methods, we can estimate the OOD performance of models with high precision for a broader set of distribution shifts.
arXiv Detail & Related papers (2023-10-07T23:21:25Z) - Zero-Shot Motor Health Monitoring by Blind Domain Transition [17.664784126708742]
We propose a zero-shot bearing fault detection method that can detect any fault on a new (target) machine regardless of the working conditions, sensor parameters, or fault characteristics.
Experimental results demonstrate that this novel approach can accurately detect any bearing fault achieving an average recall rate of around 89% and 95% on two target machines regardless of its type, severity, and location.
arXiv Detail & Related papers (2022-12-12T18:36:02Z) - Detecting train driveshaft damages using accelerometer signals and
Differential Convolutional Neural Networks [67.60224656603823]
This paper proposes the development of a railway axle condition monitoring system based on advanced 2D-Convolutional Neural Network (CNN) architectures.
The resultant system converts the railway axle vibration signals into time-frequency domain representations, i.e., spectrograms, and, thus, trains a two-dimensional CNN to classify them depending on their cracks.
arXiv Detail & Related papers (2022-11-15T15:04:06Z) - A Fast and Efficient Conditional Learning for Tunable Trade-Off between
Accuracy and Robustness [11.35810118757863]
Existing models that achieve state-of-the-art (SOTA) performance on both clean and adversarially-perturbed images rely on convolution operations conditioned with feature-wise linear modulation (FiLM) layers.
We present a fast learnable once-for-all adversarial training (FLOAT) algorithm, which instead of the existing FiLM-based conditioning, presents a unique weight conditioned learning that requires no additional layer.
In particular, we add scaled noise to the weight tensors that enables a trade-off between clean and adversarial performance.
arXiv Detail & Related papers (2022-03-28T19:25:36Z) - Robustness and Accuracy Could Be Reconcilable by (Proper) Definition [109.62614226793833]
The trade-off between robustness and accuracy has been widely studied in the adversarial literature.
We find that it may stem from the improperly defined robust error, which imposes an inductive bias of local invariance.
By definition, SCORE facilitates the reconciliation between robustness and accuracy, while still handling the worst-case uncertainty.
arXiv Detail & Related papers (2022-02-21T10:36:09Z) - Fine-Tuning can Distort Pretrained Features and Underperform
Out-of-Distribution [100.01469697743322]
Fine-tuning can achieve worse accuracy than linear probing when the pretrained features are good and the distribution shift is large.
We show theoretically that this tradeoff between ID and OOD accuracy arises even in a simple setting.
Our analysis suggests that the easy two-step strategy of linear probing then full fine-tuning combines the benefits of both fine-tuning and linear probing.
arXiv Detail & Related papers (2022-02-21T09:03:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.