Design and implementation of a distributed security threat detection system integrating federated learning and multimodal LLM
- URL: http://arxiv.org/abs/2502.17763v1
- Date: Tue, 25 Feb 2025 01:44:08 GMT
- Title: Design and implementation of a distributed security threat detection system integrating federated learning and multimodal LLM
- Authors: Yuqing Wang, Xiao Yang,
- Abstract summary: This paper presents a novel distributed security threat detection system that integrates federated learning with multimodal large language models (LLMs)<n> Experimental evaluation on a 10TB distributed dataset demonstrates that our approach achieves 96.4% detection accuracy, outperforming traditional baseline models by 4.1 percentage points.<n>Performance analysis shows that our system maintains efficient processing capabilities in distributed environments, requiring 180 seconds for model training and 3.8 seconds for threat detection across the distributed network.
- Score: 11.657154571216234
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional security protection methods struggle to address sophisticated attack vectors in large-scale distributed systems, particularly when balancing detection accuracy with data privacy concerns. This paper presents a novel distributed security threat detection system that integrates federated learning with multimodal large language models (LLMs). Our system leverages federated learning to ensure data privacy while employing multimodal LLMs to process heterogeneous data sources including network traffic, system logs, images, and sensor data. Experimental evaluation on a 10TB distributed dataset demonstrates that our approach achieves 96.4% detection accuracy, outperforming traditional baseline models by 4.1 percentage points. The system reduces both false positive and false negative rates by 1.8 and 2.4 percentage points respectively. Performance analysis shows that our system maintains efficient processing capabilities in distributed environments, requiring 180 seconds for model training and 3.8 seconds for threat detection across the distributed network. These results demonstrate significant improvements in detection accuracy and computational efficiency while preserving data privacy, suggesting strong potential for real-world deployment in large-scale security systems.
Related papers
- WeiDetect: Weibull Distribution-Based Defense against Poisoning Attacks in Federated Learning for Network Intrusion Detection Systems [23.03944479383518]
We propose WeiDetect, a two-phase, server-side defense mechanism for FL-based NIDS that detects malicious participants.
We conducted experiments to evaluate the effectiveness of our approach in diverse attack settings.
Our findings highlight that WeiDetect outperforms state-of-the-art defense approaches.
arXiv Detail & Related papers (2025-04-06T05:31:24Z) - Lie Detector: Unified Backdoor Detection via Cross-Examination Framework [68.45399098884364]
We propose a unified backdoor detection framework in the semi-honest setting.
Our method achieves superior detection performance, improving accuracy by 5.4%, 1.6%, and 11.9% over SoTA baselines.
Notably, it is the first to effectively detect backdoors in multimodal large language models.
arXiv Detail & Related papers (2025-03-21T06:12:06Z) - Efficient Federated Intrusion Detection in 5G ecosystem using optimized BERT-based model [0.7100520098029439]
5G offers advanced services, supporting applications such as intelligent transportation, connected healthcare, and smart cities within the Internet of Things (IoT)
These advancements introduce significant security challenges, with increasingly sophisticated cyber-attacks.
This paper proposes a robust intrusion detection system (IDS) using federated learning and large language models (LLMs)
arXiv Detail & Related papers (2024-09-28T15:56:28Z) - Decentralized Federated Anomaly Detection in Smart Grids: A P2P Gossip Approach [0.44328715570014865]
This paper introduces a novel decentralized federated anomaly detection scheme based on two main gossip protocols namely Random Walk and Epidemic.<n>Our approach yields a notable 35% improvement in training time compared to conventional Federated Learning.
arXiv Detail & Related papers (2024-07-20T10:45:06Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Deep Learning-based Embedded Intrusion Detection System for Automotive
CAN [12.084121187559864]
Various intrusion detection approaches have been proposed to detect and tackle such threats, with machine learning models proving highly effective.
We propose a hybrid FPGA-based ECU approach that can transparently integrate IDS functionality through a dedicated off-the-shelf hardware accelerator.
Our results show that the proposed approach provides an average accuracy of over 99% across multiple attack datasets with 0.64% false detection rates.
arXiv Detail & Related papers (2024-01-19T13:13:38Z) - Distributionally Robust Statistical Verification with Imprecise Neural
Networks [4.094049541486327]
A particularly challenging problem in AI safety is providing guarantees on the behavior of high-dimensional autonomous systems.
This paper proposes a novel approach based on a combination of active learning, uncertainty quantification, and neural network verification.
arXiv Detail & Related papers (2023-08-28T18:06:24Z) - Free Lunch for Generating Effective Outlier Supervision [46.37464572099351]
We propose an ultra-effective method to generate near-realistic outlier supervision.
Our proposed textttBayesAug significantly reduces the false positive rate over 12.50% compared with the previous schemes.
arXiv Detail & Related papers (2023-01-17T01:46:45Z) - Distributed Dynamic Safe Screening Algorithms for Sparse Regularization [73.85961005970222]
We propose a new distributed dynamic safe screening (DDSS) method for sparsity regularized models and apply it on shared-memory and distributed-memory architecture respectively.
We prove that the proposed method achieves the linear convergence rate with lower overall complexity and can eliminate almost all the inactive features in a finite number of iterations almost surely.
arXiv Detail & Related papers (2022-04-23T02:45:55Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Identity-Aware Attribute Recognition via Real-Time Distributed Inference
in Mobile Edge Clouds [53.07042574352251]
We design novel models for pedestrian attribute recognition with re-ID in an MEC-enabled camera monitoring system.
We propose a novel inference framework with a set of distributed modules, by jointly considering the attribute recognition and person re-ID.
We then devise a learning-based algorithm for the distributions of the modules of the proposed distributed inference framework.
arXiv Detail & Related papers (2020-08-12T12:03:27Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.