Easy-Poly: A Easy Polyhedral Framework For 3D Multi-Object Tracking
- URL: http://arxiv.org/abs/2502.17822v2
- Date: Wed, 26 Feb 2025 03:38:28 GMT
- Title: Easy-Poly: A Easy Polyhedral Framework For 3D Multi-Object Tracking
- Authors: Peng Zhang, Xin Li, Xin Lin, Liang He,
- Abstract summary: We present Easy-Poly, a real-time, filter-based 3D MOT framework for multiple object categories.<n>Results show that Easy-Poly outperforms state-of-the-art methods such as Poly-MOT and Fast-Poly.<n>These findings highlight Easy-Poly's adaptability and robustness in diverse scenarios.
- Score: 23.40561503456164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in 3D multi-object tracking (3D MOT) have predominantly relied on tracking-by-detection pipelines. However, these approaches often neglect potential enhancements in 3D detection processes, leading to high false positives (FP), missed detections (FN), and identity switches (IDS), particularly in challenging scenarios such as crowded scenes, small-object configurations, and adverse weather conditions. Furthermore, limitations in data preprocessing, association mechanisms, motion modeling, and life-cycle management hinder overall tracking robustness. To address these issues, we present Easy-Poly, a real-time, filter-based 3D MOT framework for multiple object categories. Our contributions include: (1) An Augmented Proposal Generator utilizing multi-modal data augmentation and refined SpConv operations, significantly improving mAP and NDS on nuScenes; (2) A Dynamic Track-Oriented (DTO) data association algorithm that effectively manages uncertainties and occlusions through optimal assignment and multiple hypothesis handling; (3) A Dynamic Motion Modeling (DMM) incorporating a confidence-weighted Kalman filter and adaptive noise covariances, enhancing MOTA and AMOTA in challenging conditions; and (4) An extended life-cycle management system with adjustive thresholds to reduce ID switches and false terminations. Experimental results show that Easy-Poly outperforms state-of-the-art methods such as Poly-MOT and Fast-Poly, achieving notable gains in mAP (e.g., from 63.30% to 64.96% with LargeKernel3D) and AMOTA (e.g., from 73.1% to 74.5%), while also running in real-time. These findings highlight Easy-Poly's adaptability and robustness in diverse scenarios, making it a compelling choice for autonomous driving and related 3D MOT applications. The source code of this paper will be published upon acceptance.
Related papers
- Tracking Meets Large Multimodal Models for Driving Scenario Understanding [76.71815464110153]
Large Multimodal Models (LMMs) have recently gained prominence in autonomous driving research.
We propose to integrate tracking information as an additional input to recover 3D spatial and temporal details.
We introduce a novel approach for embedding this tracking information into LMMs to enhance their understanding of driving scenarios.
arXiv Detail & Related papers (2025-03-18T17:59:12Z) - OptiPMB: Enhancing 3D Multi-Object Tracking with Optimized Poisson Multi-Bernoulli Filtering [16.047505930360202]
We present OptiPMB, a novel RFS-based 3D MOT method that employs an optimized Poisson multi-Bernoulli filter.
We show that OptiPMB achieves superior tracking accuracy compared with state-of-the-art methods.
arXiv Detail & Related papers (2025-03-17T09:24:26Z) - IMM-MOT: A Novel 3D Multi-object Tracking Framework with Interacting Multiple Model Filter [10.669576499007139]
3D Multi-Object Tracking (MOT) provides the trajectories of surrounding objects.<n>Existing 3D MOT methods based on the Tracking-by-Detection framework typically use a single motion model to track an object.<n>We introduce the Interacting Multiple Model filter in IMM-MOT, which accurately fits the complex motion patterns of individual objects.
arXiv Detail & Related papers (2025-02-13T01:55:32Z) - Street Gaussians without 3D Object Tracker [86.62329193275916]
Existing methods rely on labor-intensive manual labeling of object poses to reconstruct dynamic objects in canonical space.
We propose a stable object tracking module by leveraging associations from 2D deep trackers within a 3D object fusion strategy.
We address inevitable tracking errors by further introducing a motion learning strategy in an implicit feature space that autonomously corrects trajectory errors and recovers missed detections.
arXiv Detail & Related papers (2024-12-07T05:49:42Z) - 3D Multi-Object Tracking with Semi-Supervised GRU-Kalman Filter [6.13623925528906]
3D Multi-Object Tracking (MOT) is essential for intelligent systems like autonomous driving and robotic sensing.
We propose a GRU-based MOT method, which introduces a learnable Kalman filter into the motion module.
This approach is able to learn object motion characteristics through data-driven learning, thereby avoiding the need for manual model design and model error.
arXiv Detail & Related papers (2024-11-13T08:34:07Z) - SimDistill: Simulated Multi-modal Distillation for BEV 3D Object
Detection [56.24700754048067]
Multi-view camera-based 3D object detection has become popular due to its low cost, but accurately inferring 3D geometry solely from camera data remains challenging.
We propose a Simulated multi-modal Distillation (SimDistill) method by carefully crafting the model architecture and distillation strategy.
Our SimDistill can learn better feature representations for 3D object detection while maintaining a cost-effective camera-only deployment.
arXiv Detail & Related papers (2023-03-29T16:08:59Z) - Modeling Continuous Motion for 3D Point Cloud Object Tracking [54.48716096286417]
This paper presents a novel approach that views each tracklet as a continuous stream.
At each timestamp, only the current frame is fed into the network to interact with multi-frame historical features stored in a memory bank.
To enhance the utilization of multi-frame features for robust tracking, a contrastive sequence enhancement strategy is proposed.
arXiv Detail & Related papers (2023-03-14T02:58:27Z) - CAMO-MOT: Combined Appearance-Motion Optimization for 3D Multi-Object
Tracking with Camera-LiDAR Fusion [34.42289908350286]
3D Multi-object tracking (MOT) ensures consistency during continuous dynamic detection.
It can be challenging to accurately track the irregular motion of objects for LiDAR-based methods.
We propose a novel camera-LiDAR fusion 3D MOT framework based on the Combined Appearance-Motion Optimization (CAMO-MOT)
arXiv Detail & Related papers (2022-09-06T14:41:38Z) - Know Your Surroundings: Panoramic Multi-Object Tracking by Multimodality
Collaboration [56.01625477187448]
We propose a MultiModality PAnoramic multi-object Tracking framework (MMPAT)
It takes both 2D panorama images and 3D point clouds as input and then infers target trajectories using the multimodality data.
We evaluate the proposed method on the JRDB dataset, where the MMPAT achieves the top performance in both the detection and tracking tasks.
arXiv Detail & Related papers (2021-05-31T03:16:38Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - Multi-Object Tracking using Poisson Multi-Bernoulli Mixture Filtering
for Autonomous Vehicles [0.0]
The ability of an autonomous vehicle to perform 3D tracking is essential for safe planing and navigation in cluttered environments.
The main challenges for multi-object tracking (MOT) in autonomous driving applications reside in the inherent uncertainties regarding the number of objects, when and where the objects may appear and disappear, and uncertainties regarding objects' states.
In this work, we developed an RFS-based MOT framework for 3D LiDAR data. In partiuclar, we propose a Poisson multi-Bernoulli mixture filter to solve the amodal MOT problem for autonomous driving applications.
arXiv Detail & Related papers (2021-03-13T20:24:18Z) - Exploring Data Augmentation for Multi-Modality 3D Object Detection [82.9988604088494]
It is counter-intuitive that multi-modality methods based on point cloud and images perform only marginally better or sometimes worse than approaches that solely use point cloud.
We propose a pipeline, named transformation flow, to bridge the gap between single and multi-modality data augmentation with transformation reversing and replaying.
Our method also wins the best PKL award in the 3rd nuScenes detection challenge.
arXiv Detail & Related papers (2020-12-23T15:23:16Z) - siaNMS: Non-Maximum Suppression with Siamese Networks for Multi-Camera
3D Object Detection [65.03384167873564]
A siamese network is integrated into the pipeline of a well-known 3D object detector approach.
associations are exploited to enhance the 3D box regression of the object.
The experimental evaluation on the nuScenes dataset shows that the proposed method outperforms traditional NMS approaches.
arXiv Detail & Related papers (2020-02-19T15:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.