Task-Driven Semantic Quantization and Imitation Learning for Goal-Oriented Communications
- URL: http://arxiv.org/abs/2502.17842v2
- Date: Fri, 28 Feb 2025 03:43:09 GMT
- Title: Task-Driven Semantic Quantization and Imitation Learning for Goal-Oriented Communications
- Authors: Yu-Chieh Chao, Yubei Chen, Weiwei Wang, Achintha Wijesinghe, Suchinthaka Wanninayaka, Songyang Zhang, Zhi Ding,
- Abstract summary: We propose a novel goal-oriented communication (GO-COM) framework, namely Goal-Oriented Semantic Variational Autoencoder (GOS-VAE)<n>To capture the relevant semantic features in the data reconstruction, imitation learning is adopted to measure the data regeneration quality.<n>Our experimental results demonstrate the power of imitation learning in characterizing goal-oriented semantics and bandwidth efficiency of our proposed GOS-VAE.
- Score: 44.330805289033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic communication marks a new paradigm shift from bit-wise data transmission to semantic information delivery for the purpose of bandwidth reduction. To more effectively carry out specialized downstream tasks at the receiver end, it is crucial to define the most critical semantic message in the data based on the task or goal-oriented features. In this work, we propose a novel goal-oriented communication (GO-COM) framework, namely Goal-Oriented Semantic Variational Autoencoder (GOS-VAE), by focusing on the extraction of the semantics vital to the downstream tasks. Specifically, we adopt a Vector Quantized Variational Autoencoder (VQ-VAE) to compress media data at the transmitter side. Instead of targeting the pixel-wise image data reconstruction, we measure the quality-of-service at the receiver end based on a pre-defined task-incentivized model. Moreover, to capture the relevant semantic features in the data reconstruction, imitation learning is adopted to measure the data regeneration quality in terms of goal-oriented semantics. Our experimental results demonstrate the power of imitation learning in characterizing goal-oriented semantics and bandwidth efficiency of our proposed GOS-VAE.
Related papers
- Tackling Distribution Shifts in Task-Oriented Communication with Information Bottleneck [28.661084093544684]
We propose a novel approach based on the information bottleneck (IB) principle and invariant risk minimization (IRM) framework.
The proposed method aims to extract compact and informative features that possess high capability for effective domain-shift generalization.
We show that the proposed scheme outperforms state-of-the-art approaches and achieves a better rate-distortion tradeoff.
arXiv Detail & Related papers (2024-05-15T17:07:55Z) - Transformer-Aided Semantic Communications [28.63893944806149]
We employ vision transformers specifically for the purpose of compression and compact representation of the input image.
Through the use of the attention mechanism inherent in transformers, we create an attention mask.
We evaluate the effectiveness of our proposed framework using the TinyImageNet dataset.
arXiv Detail & Related papers (2024-05-02T17:50:53Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
We propose a novel agent-driven generative semantic communication framework based on reinforcement learning.
In this work, we develop an agent-assisted semantic encoder with cross-modality capability, which can track the semantic changes, channel condition, to perform adaptive semantic extraction and sampling.
The effectiveness of the designed models has been verified using the UA-DETRAC dataset, demonstrating the performance gains of the overall A-GSC framework.
arXiv Detail & Related papers (2024-04-10T13:24:27Z) - Reasoning with the Theory of Mind for Pragmatic Semantic Communication [62.87895431431273]
A pragmatic semantic communication framework is proposed in this paper.
It enables effective goal-oriented information sharing between two-intelligent agents.
Numerical evaluations demonstrate the framework's ability to achieve efficient communication with a reduced amount of bits.
arXiv Detail & Related papers (2023-11-30T03:36:19Z) - Reasoning over the Air: A Reasoning-based Implicit Semantic-Aware
Communication Framework [124.6509194665514]
A novel implicit semantic-aware communication (iSAC) architecture is proposed for representing, communicating, and interpreting the implicit semantic meaning between source and destination users.
A projection-based semantic encoder is proposed to convert the high-dimensional graphical representation of explicit semantics into a low-dimensional semantic constellation space for efficient physical channel transmission.
A generative adversarial imitation learning-based solution, called G-RML, is proposed to enable the destination user to learn and imitate the implicit semantic reasoning process of source user.
arXiv Detail & Related papers (2023-06-20T01:32:27Z) - Semantic-Native Communication: A Simplicial Complex Perspective [50.099494681671224]
We study semantic communication from a topological space perspective.
A transmitter first maps its data into a $k$-order simplicial complex and then learns its high-order correlations.
The receiver decodes the structure and infers the missing or distorted data.
arXiv Detail & Related papers (2022-10-30T22:33:44Z) - Performance Optimization for Semantic Communications: An Attention-based
Reinforcement Learning Approach [187.4094332217186]
A semantic communication framework is proposed for textual data transmission.
A metric of semantic similarity (MSS) that jointly captures the semantic accuracy and completeness of the recovered text is proposed.
arXiv Detail & Related papers (2022-08-17T11:39:16Z) - Learning Task-Oriented Communication for Edge Inference: An Information
Bottleneck Approach [3.983055670167878]
A low-end edge device transmits the extracted feature vector of a local data sample to a powerful edge server for processing.
It is critical to encode the data into an informative and compact representation for low-latency inference given the limited bandwidth.
We propose a learning-based communication scheme that jointly optimize feature extraction, source coding, and channel coding.
arXiv Detail & Related papers (2021-02-08T12:53:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.