Arrhythmia Classification from 12-Lead ECG Signals Using Convolutional and Transformer-Based Deep Learning Models
- URL: http://arxiv.org/abs/2502.17887v1
- Date: Tue, 25 Feb 2025 06:17:52 GMT
- Title: Arrhythmia Classification from 12-Lead ECG Signals Using Convolutional and Transformer-Based Deep Learning Models
- Authors: Andrei Apostol, Maria Nutu,
- Abstract summary: In Romania, cardiovascular problems are the leading cause of death, accounting for nearly one-third of annual fatalities.<n>This article aims to explore efficient, light-weight and rapid methods for arrhythmia diagnosis, in resource-constrained healthcare settings.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In Romania, cardiovascular problems are the leading cause of death, accounting for nearly one-third of annual fatalities. The severity of this situation calls for innovative diagnosis method for cardiovascular diseases. This article aims to explore efficient, light-weight and rapid methods for arrhythmia diagnosis, in resource-constrained healthcare settings. Due to the lack of Romanian public medical data, we trained our systems using international public datasets, having in mind that the ECG signals are the same regardless the patients' nationality. Within this purpose, we combined multiple datasets, usually used in the field of arrhythmias classification: PTB-XL electrocardiography dataset , PTB Diagnostic ECG Database, China 12-Lead ECG Challenge Database, Georgia 12-Lead ECG Challenge Database, and St. Petersburg INCART 12-lead Arrhythmia Database. For the input data, we employed ECG signal processing methods, specifically a variant of the Pan-Tompkins algorithm, useful in arrhythmia classification because it provides a robust and efficient method for detecting QRS complexes in ECG signals. Additionally, we used machine learning techniques, widely used for the task of classification, including convolutional neural networks (1D CNNs, 2D CNNs, ResNet) and Vision Transformers (ViTs). The systems were evaluated in terms of accuracy and F1 score. We annalysed our dataset from two perspectives. First, we fed the systems with the ECG signals and the GRU-based 1D CNN model achieved the highest accuracy of 93.4% among all the tested architectures. Secondly, we transformed ECG signals into images and the CNN2D model achieved an accuracy of 92.16%.
Related papers
- MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - Deep Learning Models for Arrhythmia Classification Using Stacked
Time-frequency Scalogram Images from ECG Signals [4.659427498118277]
This paper proposes an automated AI based system for ECG-based arrhythmia classification.
Deep learning based solution has been proposed for ECG-based arrhythmia classification.
arXiv Detail & Related papers (2023-12-01T03:16:32Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - SEVGGNet-LSTM: a fused deep learning model for ECG classification [38.747030782394646]
The input ECG signals are firstly segmented and normalized, and then fed into the combined VGG and LSTM network for feature extraction and classification.
An attention mechanism (SE block) is embedded into the core network for increasing the weight of important features.
arXiv Detail & Related papers (2022-10-31T07:36:48Z) - Hierarchical Deep Learning with Generative Adversarial Network for
Automatic Cardiac Diagnosis from ECG Signals [2.5008947886814186]
We propose a two-level hierarchical deep learning framework with Generative Adversarial Network (GAN) for automatic diagnosis of ECG signals.
The first-level model is composed of a Memory-Augmented Deep auto-Encoder with GAN, which aims to differentiate abnormal signals from normal ECGs for anomaly detection.
The second-level learning aims at robust multi-class classification for different arrhythmias identification.
arXiv Detail & Related papers (2022-10-19T12:29:05Z) - A lightweight hybrid CNN-LSTM model for ECG-based arrhythmia detection [0.0]
This paper introduces a light deep learning approach for high accuracy detection of 8 different cardiac arrhythmias and normal rhythm.
A trained model for arrhythmia classification using diverse ECG signals were successfully developed and tested.
arXiv Detail & Related papers (2022-08-29T05:01:04Z) - Enhancing Deep Learning-based 3-lead ECG Classification with Heartbeat
Counting and Demographic Data Integration [0.0]
This article introduces two novel techniques to improve the performance of the current deep learning system for 3-lead ECG classification.
Specifically, we propose a multi-task learning scheme in the form of the number of heartbeats regression and an effective mechanism to integrate patient demographic data into the system.
With these two advancements, we got classification performance in terms of F1 scores of 0.9796 and 0.8140 on two large-scale ECG datasets.
arXiv Detail & Related papers (2022-08-15T09:33:36Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Atrial Fibrillation Detection and ECG Classification based on CNN-BiLSTM [3.1372269816123994]
It is challenging to visually detect heart disease from the electrocardiographic (ECG) signals.
Implementing an automated ECG signal detection system can help diagnosis arrhythmia in order to improve the accuracy of diagnosis.
arXiv Detail & Related papers (2020-11-12T04:20:56Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.