FetchBot: Object Fetching in Cluttered Shelves via Zero-Shot Sim2Real
- URL: http://arxiv.org/abs/2502.17894v1
- Date: Tue, 25 Feb 2025 06:32:42 GMT
- Title: FetchBot: Object Fetching in Cluttered Shelves via Zero-Shot Sim2Real
- Authors: Weiheng Liu, Yuxuan Wan, Jilong Wang, Yuxuan Kuang, Xuesong Shi, Haoran Li, Dongbin Zhao, Zhizheng Zhang, He Wang,
- Abstract summary: FetchBot is a framework designed to enable zero-shot generalizable and safety-aware object fetching from cluttered shelves in real-world settings.<n>To address data scarcity, we propose an efficient voxel-based method for generating diverse simulated cluttered shelf scenes.<n>To tackle the challenge of limited views, we design a novel architecture for learning multi-view representations.
- Score: 22.899593664306717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object fetching from cluttered shelves is an important capability for robots to assist humans in real-world scenarios. Achieving this task demands robotic behaviors that prioritize safety by minimizing disturbances to surrounding objects, an essential but highly challenging requirement due to restricted motion space, limited fields of view, and complex object dynamics. In this paper, we introduce FetchBot, a sim-to-real framework designed to enable zero-shot generalizable and safety-aware object fetching from cluttered shelves in real-world settings. To address data scarcity, we propose an efficient voxel-based method for generating diverse simulated cluttered shelf scenes at scale and train a dynamics-aware reinforcement learning (RL) policy to generate object fetching trajectories within these scenes. This RL policy, which leverages oracle information, is subsequently distilled into a vision-based policy for real-world deployment. Considering that sim-to-real discrepancies stem from texture variations mostly while from geometric dimensions rarely, we propose to adopt depth information estimated by full-fledged depth foundation models as the input for the vision-based policy to mitigate sim-to-real gap. To tackle the challenge of limited views, we design a novel architecture for learning multi-view representations, allowing for comprehensive encoding of cluttered shelf scenes. This enables FetchBot to effectively minimize collisions while fetching objects from varying positions and depths, ensuring robust and safety-aware operation. Both simulation and real-robot experiments demonstrate FetchBot's superior generalization ability, particularly in handling a broad range of real-world scenarios, includ
Related papers
- Object-level Scene Deocclusion [92.39886029550286]
We present a new self-supervised PArallel visible-to-COmplete diffusion framework, named PACO, for object-level scene deocclusion.
To train PACO, we create a large-scale dataset with 500k samples to enable self-supervised learning.
Experiments on COCOA and various real-world scenes demonstrate the superior capability of PACO for scene deocclusion, surpassing the state of the arts by a large margin.
arXiv Detail & Related papers (2024-06-11T20:34:10Z) - RPMArt: Towards Robust Perception and Manipulation for Articulated Objects [56.73978941406907]
We propose a framework towards Robust Perception and Manipulation for Articulated Objects ( RPMArt)
RPMArt learns to estimate the articulation parameters and manipulate the articulation part from the noisy point cloud.
We introduce an articulation-aware classification scheme to enhance its ability for sim-to-real transfer.
arXiv Detail & Related papers (2024-03-24T05:55:39Z) - Closing the Visual Sim-to-Real Gap with Object-Composable NeRFs [59.12526668734703]
We introduce Composable Object Volume NeRF (COV-NeRF), an object-composable NeRF model that is the centerpiece of a real-to-sim pipeline.
COV-NeRF extracts objects from real images and composes them into new scenes, generating photorealistic renderings and many types of 2D and 3D supervision.
arXiv Detail & Related papers (2024-03-07T00:00:02Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
We propose a novel paradigm that effectively leverages language-reasoning segmentation mask generated by internet-scale foundation models.<n>Our approach can effectively and robustly perceive object pose and enable sample-efficient generalization learning.<n>Demos can be found in our submitted video, and more comprehensive ones can be found in link1 or link2.
arXiv Detail & Related papers (2023-06-09T07:22:12Z) - Robot Active Neural Sensing and Planning in Unknown Cluttered
Environments [0.0]
Active sensing and planning in unknown, cluttered environments is an open challenge for robots intending to provide home service, search and rescue, narrow-passage inspection, and medical assistance.
We present the active neural sensing approach that generates the kinematically feasible viewpoint sequences for the robot manipulator with an in-hand camera to gather the minimum number of observations needed to reconstruct the underlying environment.
Our framework actively collects the visual RGBD observations, aggregates them into scene representation, and performs object shape inference to avoid unnecessary robot interactions with the environment.
arXiv Detail & Related papers (2022-08-23T16:56:54Z) - IFOR: Iterative Flow Minimization for Robotic Object Rearrangement [92.97142696891727]
IFOR, Iterative Flow Minimization for Robotic Object Rearrangement, is an end-to-end method for the problem of object rearrangement for unknown objects.
We show that our method applies to cluttered scenes, and in the real world, while training only on synthetic data.
arXiv Detail & Related papers (2022-02-01T20:03:56Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
We present a large-scale benchmark dataset for vision-driven robotic grasping via physics-based metaverse synthesis.
The proposed dataset contains 100,000 images and 25 different object types.
We also propose a new layout-weighted performance metric alongside the dataset for evaluating object detection and segmentation performance.
arXiv Detail & Related papers (2021-12-29T17:23:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.