Detecting Knowledge Boundary of Vision Large Language Models by Sampling-Based Inference
- URL: http://arxiv.org/abs/2502.18023v1
- Date: Tue, 25 Feb 2025 09:32:08 GMT
- Title: Detecting Knowledge Boundary of Vision Large Language Models by Sampling-Based Inference
- Authors: Zhuo Chen, Xinyu Wang, Yong Jiang, Zhen Zhang, Xinyu Geng, Pengjun Xie, Fei Huang, Kewei Tu,
- Abstract summary: We propose a method to detect the knowledge boundary of Visual Large Language Models (VLLMs)<n>We show that our method successfully depicts a VLLM's knowledge boundary based on which we are able to reduce indiscriminate retrieval while maintaining or improving the performance.
- Score: 78.08901120841833
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the advancements made in Visual Large Language Models (VLLMs), like text Large Language Models (LLMs), they have limitations in addressing questions that require real-time information or are knowledge-intensive. Indiscriminately adopting Retrieval Augmented Generation (RAG) techniques is an effective yet expensive way to enable models to answer queries beyond their knowledge scopes. To mitigate the dependence on retrieval and simultaneously maintain, or even improve, the performance benefits provided by retrieval, we propose a method to detect the knowledge boundary of VLLMs, allowing for more efficient use of techniques like RAG. Specifically, we propose a method with two variants that fine-tunes a VLLM on an automatically constructed dataset for boundary identification. Experimental results on various types of Visual Question Answering datasets show that our method successfully depicts a VLLM's knowledge boundary based on which we are able to reduce indiscriminate retrieval while maintaining or improving the performance. In addition, we show that the knowledge boundary identified by our method for one VLLM can be used as a surrogate boundary for other VLLMs. Code will be released at https://github.com/Chord-Chen-30/VLLM-KnowledgeBoundary
Related papers
- Systematic Knowledge Injection into Large Language Models via Diverse Augmentation for Domain-Specific RAG [24.660769275714685]
Retrieval-Augmented Generation (RAG) has emerged as a prominent method for incorporating domain knowledge into Large Language Models (LLMs)
We present a novel framework that significantly enhances the fine-tuning process by augmenting the training data in two ways -- context augmentation and knowledge paraphrasing.
arXiv Detail & Related papers (2025-02-12T12:39:51Z) - BANER: Boundary-Aware LLMs for Few-Shot Named Entity Recognition [12.57768435856206]
We propose an approach called Boundary-Aware LLMs for Few-Shot Named Entity Recognition.
We introduce a boundary-aware contrastive learning strategy to enhance the LLM's ability to perceive entity boundaries for generalized entity spans.
We utilize LoRAHub to align information from the target domain to the source domain, thereby enhancing adaptive cross-domain classification capabilities.
arXiv Detail & Related papers (2024-12-03T07:51:14Z) - Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
Large Language Models (LLMs) are increasingly recognized for their practical applications.
Retrieval-Augmented Generation (RAG) tackles this challenge and has shown a significant impact on LLMs.
By minimizing retrieval requests that yield neutral or harmful results, we can effectively reduce both time and computational costs.
arXiv Detail & Related papers (2024-11-09T15:12:28Z) - SearchLVLMs: A Plug-and-Play Framework for Augmenting Large Vision-Language Models by Searching Up-to-Date Internet Knowledge [56.772051051558215]
Large vision-language models (LVLMs) are ignorant of the up-to-date knowledge, such as LLaVA series, because they cannot be updated frequently.
We propose a plug-and-play framework, for augmenting existing LVLMs in handling visual question answering (VQA) about up-to-date knowledge, dubbed SearchLVLMs.
arXiv Detail & Related papers (2024-05-23T13:32:07Z) - Embedding-Informed Adaptive Retrieval-Augmented Generation of Large Language Models [37.02290559379761]
Retrieval-augmented large language models (LLMs) have been remarkably competent in various NLP tasks.
Motivated by this, Adaptive Retrieval-Augmented Generation (ARAG) studies retrieving only when the knowledge asked by the query is absent in the LLM.
arXiv Detail & Related papers (2024-04-04T15:21:22Z) - An Empirical Study of Automated Vulnerability Localization with Large Language Models [21.84971967029474]
Large Language Models (LLMs) have shown potential in various domains, yet their effectiveness in vulnerability localization remains underexplored.
Our investigation encompasses 10+ leading LLMs suitable for code analysis, including ChatGPT and various open-source models.
We explore the efficacy of these LLMs using 4 distinct paradigms: zero-shot learning, one-shot learning, discriminative fine-tuning, and generative fine-tuning.
arXiv Detail & Related papers (2024-03-30T08:42:10Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Generative Multi-Modal Knowledge Retrieval with Large Language Models [75.70313858231833]
We propose an innovative end-to-end generative framework for multi-modal knowledge retrieval.
Our framework takes advantage of the fact that large language models (LLMs) can effectively serve as virtual knowledge bases.
We demonstrate significant improvements ranging from 3.0% to 14.6% across all evaluation metrics when compared to strong baselines.
arXiv Detail & Related papers (2024-01-16T08:44:29Z) - Self-Knowledge Guided Retrieval Augmentation for Large Language Models [59.771098292611846]
Large language models (LLMs) have shown superior performance without task-specific fine-tuning.
Retrieval-based methods can offer non-parametric world knowledge and improve the performance on tasks such as question answering.
Self-Knowledge guided Retrieval augmentation (SKR) is a simple yet effective method which can let LLMs refer to the questions they have previously encountered.
arXiv Detail & Related papers (2023-10-08T04:22:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.