S-Graphs 2.0 -- A Hierarchical-Semantic Optimization and Loop Closure for SLAM
- URL: http://arxiv.org/abs/2502.18044v2
- Date: Fri, 28 Feb 2025 12:23:03 GMT
- Title: S-Graphs 2.0 -- A Hierarchical-Semantic Optimization and Loop Closure for SLAM
- Authors: Hriday Bavle, Jose Luis Sanchez-Lopez, Muhammad Shaheer, Javier Civera, Holger Voos,
- Abstract summary: We present Situational Graphs 2.0 (S-Graphs 2.0), which leverages the hierarchical structure of indoor scenes for efficient data management and optimization.<n>Our algorithm begins by constructing a situational graph that represents the environment into four layers: Keyframes, Walls, Rooms, and Floors.<n>We propose a floor-based loop closure strategy, that effectively rejects false positive closures that typically appear due to aliasing between different floors of a building.
- Score: 6.978842308009956
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The hierarchical structure of 3D scene graphs shows a high relevance for representations purposes, as it fits common patterns from man-made environments. But, additionally, the semantic and geometric information in such hierarchical representations could be leveraged to speed up the optimization and management of map elements and robot poses. In this direction, we present our work Situational Graphs 2.0 (S-Graphs 2.0), which leverages the hierarchical structure of indoor scenes for efficient data management and optimization. Our algorithm begins by constructing a situational graph that represents the environment into four layers: Keyframes, Walls, Rooms, and Floors. Our first novelty lies in the front-end, which includes a floor detection module capable of identifying stairways and assigning floor-level semantic relations to the underlying layers. Floor-level semantics allows us to propose a floor-based loop closure strategy, that effectively rejects false positive closures that typically appear due to aliasing between different floors of a building. Our second novelty lies in leveraging our representation hierarchy in the optimization. Our proposal consists of: (1) local optimization over a window of recent keyframes and their connected components across the four representation layers, (2) floor-level global optimization, which focuses only on keyframes and their connections within the current floor during loop closures, and (3) room-level local optimization, marginalizing redundant keyframes that share observations within the room, which reduces the computational footprint. We validate our algorithm extensively in different real multi-floor environments. Our approach shows state-of-art-art accuracy metrics in large-scale multi-floor environments, estimating hierarchical representations up to 10x faster, in average, than competing baselines
Related papers
- Learning and Evaluating Hierarchical Feature Representations [3.770103075126785]
We propose a novel framework, Hierarchical Composition of Orthogonal Subspaces (Hier-COS)
Hier-COS learns to map deep feature embeddings into a vector space that is, by design, consistent with the structure of a given taxonomy tree.
We demonstrate that Hier-COS achieves state-of-the-art hierarchical performance across all the datasets while simultaneously beating top-1 accuracy in all but one case.
arXiv Detail & Related papers (2025-03-10T20:59:41Z) - Open-Vocabulary Octree-Graph for 3D Scene Understanding [54.11828083068082]
Octree-Graph is a novel scene representation for open-vocabulary 3D scene understanding.
An adaptive-octree structure is developed that stores semantics and depicts the occupancy of an object adjustably according to its shape.
arXiv Detail & Related papers (2024-11-25T10:14:10Z) - A Structure-Aware Framework for Learning Device Placements on Computation Graphs [15.282882425920064]
We propose a novel framework for the task of device placement, relying on smaller computation graphs extracted from the OpenVINO toolkit.
The framework consists of five steps, including graph coarsening, node representation learning and policy optimization.
To train the entire framework, we use reinforcement learning using the execution time of the placement as a reward.
arXiv Detail & Related papers (2024-05-23T05:29:29Z) - GraNet: A Multi-Level Graph Network for 6-DoF Grasp Pose Generation in
Cluttered Scenes [0.5755004576310334]
GraNet is a graph-based grasp pose generation framework that translates a point cloud scene into multi-level graphs.
Our pipeline can thus characterize the spatial distribution of grasps in cluttered scenes, leading to a higher rate of effective grasping.
Our method achieves state-of-the-art performance on the large-scale GraspNet-1Billion benchmark, especially in grasping unseen objects.
arXiv Detail & Related papers (2023-12-06T08:36:29Z) - ALSTER: A Local Spatio-Temporal Expert for Online 3D Semantic
Reconstruction [62.599588577671796]
We propose an online 3D semantic segmentation method that incrementally reconstructs a 3D semantic map from a stream of RGB-D frames.
Unlike offline methods, ours is directly applicable to scenarios with real-time constraints, such as robotics or mixed reality.
arXiv Detail & Related papers (2023-11-29T20:30:18Z) - Faster Optimization in S-Graphs Exploiting Hierarchy [8.17925295907622]
We present an improved version of S-Graphs exploiting the hierarchy to reduce the graph size by marginalizing redundant robot poses.
We show similar accuracy compared to the baseline while showing a 39.81% reduction in the computation time with respect to the baseline.
arXiv Detail & Related papers (2023-08-22T07:35:15Z) - Dynamic Perceiver for Efficient Visual Recognition [87.08210214417309]
We propose Dynamic Perceiver (Dyn-Perceiver) to decouple the feature extraction procedure and the early classification task.
A feature branch serves to extract image features, while a classification branch processes a latent code assigned for classification tasks.
Early exits are placed exclusively within the classification branch, thus eliminating the need for linear separability in low-level features.
arXiv Detail & Related papers (2023-06-20T03:00:22Z) - S-Graphs+: Real-time Localization and Mapping leveraging Hierarchical
Representations [9.13466172688693]
S-Graphs+ is a novel four-layered factor graph that includes: (1) a pose layer with robot pose estimates, (2) a walls layer representing wall surfaces, (3) a rooms layer encompassing sets of wall planes, and (4) a floors layer gathering the rooms within a given floor level.
The above graph is optimized in real-time to obtain a robust and accurate estimate of the robots pose and its map, simultaneously constructing and leveraging high-level information of the environment.
arXiv Detail & Related papers (2022-12-22T15:06:21Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - Advanced Situational Graphs for Robot Navigation in Structured Indoor
Environments [9.13466172688693]
We present an advanced version of the Situational Graphs (S-Graphs+), consisting of the five layered optimizable graph.
S-Graphs+ demonstrates improved performance over S-Graphs efficiently extracting the room information.
arXiv Detail & Related papers (2022-11-16T08:30:05Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Multi-Robot Active Mapping via Neural Bipartite Graph Matching [49.72892929603187]
We study the problem of multi-robot active mapping, which aims for complete scene map construction in minimum time steps.
The key to this problem lies in the goal position estimation to enable more efficient robot movements.
We propose a novel algorithm, namely NeuralCoMapping, which takes advantage of both approaches.
arXiv Detail & Related papers (2022-03-30T14:03:17Z) - Self-supervised Geometric Perception [96.89966337518854]
Self-supervised geometric perception is a framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels.
We show that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.
arXiv Detail & Related papers (2021-03-04T15:34:43Z) - Spatial Pyramid Based Graph Reasoning for Semantic Segmentation [67.47159595239798]
We apply graph convolution into the semantic segmentation task and propose an improved Laplacian.
The graph reasoning is directly performed in the original feature space organized as a spatial pyramid.
We achieve comparable performance with advantages in computational and memory overhead.
arXiv Detail & Related papers (2020-03-23T12:28:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.