Monitoring snow avalanches from SAR data with deep learning
- URL: http://arxiv.org/abs/2502.18157v1
- Date: Tue, 25 Feb 2025 12:41:08 GMT
- Title: Monitoring snow avalanches from SAR data with deep learning
- Authors: Filippo Maria Bianchi, Jakob Grahn,
- Abstract summary: Snow avalanches present significant risks to human life and infrastructure, particularly in mountainous regions.<n>Satellite-borne Synthetic Aperture Radar (SAR) data has become an important tool for large-scale avalanche detection.<n>This chapter reviews the application of deep learning for detecting and segmenting snow avalanches from SAR data.
- Score: 5.524804393257921
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Snow avalanches present significant risks to human life and infrastructure, particularly in mountainous regions, making effective monitoring crucial. Traditional monitoring methods, such as field observations, are limited by accessibility, weather conditions, and cost. Satellite-borne Synthetic Aperture Radar (SAR) data has become an important tool for large-scale avalanche detection, as it can capture data in all weather conditions and across remote areas. However, traditional processing methods struggle with the complexity and variability of avalanches. This chapter reviews the application of deep learning for detecting and segmenting snow avalanches from SAR data. Early efforts focused on the binary classification of SAR images, while recent advances have enabled pixel-level segmentation, providing greater accuracy and spatial resolution. A case study using Sentinel-1 SAR data demonstrates the effectiveness of deep learning models for avalanche segmentation, achieving superior results over traditional methods. We also present an extension of this work, testing recent state-of-the-art segmentation architectures on an expanded dataset of over 4,500 annotated SAR images. The best-performing model among those tested was applied for large-scale avalanche detection across the whole of Norway, revealing important spatial and temporal patterns over several winter seasons.
Related papers
- Tomographic SAR Reconstruction for Forest Height Estimation [4.1942958779358674]
Tree height estimation serves as an important proxy for biomass estimation in ecological and forestry applications.<n>In this study, we use deep learning to estimate forest canopy height directly from 2D Single Look Complex (SLC) images, a derivative of Synthetic Aperture Radar (SAR)<n>Our method attempts to bypass traditional tomographic signal processing, potentially reducing latency from SAR capture to end product.
arXiv Detail & Related papers (2024-12-01T17:37:25Z) - DiffSR: Learning Radar Reflectivity Synthesis via Diffusion Model from Satellite Observations [42.635670495018964]
We propose a two-stage diffusion-based method called DiffSR to generate high-frequency details and high-value areas.
Our method achieves state-of-the-art (SOTA) results, demonstrating the ability to generate high-frequency details and high-value areas.
arXiv Detail & Related papers (2024-11-11T04:50:34Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
We explore the potential of generative image diffusion to address the scarcity of annotated data in earth observation tasks.
To the best of our knowledge, we are the first to generate both images and corresponding masks for satellite segmentation.
arXiv Detail & Related papers (2024-03-25T10:30:22Z) - SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection [79.23689506129733]
We establish a new benchmark dataset and an open-source method for large-scale SAR object detection.
Our dataset, SARDet-100K, is a result of intense surveying, collecting, and standardizing 10 existing SAR detection datasets.
To the best of our knowledge, SARDet-100K is the first COCO-level large-scale multi-class SAR object detection dataset ever created.
arXiv Detail & Related papers (2024-03-11T09:20:40Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Deep Learning for Rapid Landslide Detection using Synthetic Aperture
Radar (SAR) Datacubes [0.8208704543835964]
We provide pre-processed, machine-learning ready SAR datacubes for four globally located landslide events.
We study the feasibility of SAR-based landslide detection with supervised deep learning (DL)
DL models can be used to detect landslides from SAR data, achieving an Area under the Precision-Recall curve exceeding 0.7.
arXiv Detail & Related papers (2022-11-05T10:31:57Z) - Guided deep learning by subaperture decomposition: ocean patterns from
SAR imagery [36.922471841100176]
Sentinel 1 SAR wave mode vignettes have made possible to capture many important oceanic and atmospheric phenomena since 2014.
In this study, we propose to apply subaperture decomposition as a preprocessing stage for SAR deep learning models.
arXiv Detail & Related papers (2022-04-09T09:49:05Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
We present Embedding Earth a self-supervised contrastive pre-training method for leveraging the large availability of satellite imagery.
We observe significant improvements up to 25% absolute mIoU when pre-trained with our proposed method.
We find that learnt features can generalize between disparate regions opening up the possibility of using the proposed pre-training scheme.
arXiv Detail & Related papers (2022-03-11T16:14:14Z) - Self-supervised Contrastive Learning for Volcanic Unrest Detection [4.152165675786138]
Ground deformation measured from Interferometric Synthetic Aperture Radar (InSAR) data is considered a sign of volcanic unrest.
Recent studies have shown the potential of using Sentinel-1 InSAR data and supervised deep learning (DL) methods for the detection of volcanic deformation signals.
This letter proposes the use of self-supervised contrastive learning to learn quality visual representations hidden in unlabeled InSAR data.
arXiv Detail & Related papers (2022-02-08T17:54:51Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
Event cameras produce brightness changes in the form of a stream of asynchronous events instead of intensity frames.
Recent learning-based approaches have been applied to event-based data, such as monocular depth prediction.
We propose a recurrent architecture to solve this task and show significant improvement over standard feed-forward methods.
arXiv Detail & Related papers (2020-10-16T12:36:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.