LDGen: Enhancing Text-to-Image Synthesis via Large Language Model-Driven Language Representation
- URL: http://arxiv.org/abs/2502.18302v1
- Date: Tue, 25 Feb 2025 15:42:34 GMT
- Title: LDGen: Enhancing Text-to-Image Synthesis via Large Language Model-Driven Language Representation
- Authors: Pengzhi Li, Pengfei Yu, Zide Liu, Wei He, Xuhao Pan, Xudong Rao, Tao Wei, Wei Chen,
- Abstract summary: We introduce LDGen, a novel method for integrating large language models (LLMs) into existing text-to-image diffusion models.<n>Our approach employs a language representation strategy that applies hierarchical caption optimization and human instruction techniques to derive precise semantic information.
- Score: 14.877355149519198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce LDGen, a novel method for integrating large language models (LLMs) into existing text-to-image diffusion models while minimizing computational demands. Traditional text encoders, such as CLIP and T5, exhibit limitations in multilingual processing, hindering image generation across diverse languages. We address these challenges by leveraging the advanced capabilities of LLMs. Our approach employs a language representation strategy that applies hierarchical caption optimization and human instruction techniques to derive precise semantic information,. Subsequently, we incorporate a lightweight adapter and a cross-modal refiner to facilitate efficient feature alignment and interaction between LLMs and image features. LDGen reduces training time and enables zero-shot multilingual image generation. Experimental results indicate that our method surpasses baseline models in both prompt adherence and image aesthetic quality, while seamlessly supporting multiple languages. Project page: https://zrealli.github.io/LDGen.
Related papers
- Generative Multimodal Pretraining with Discrete Diffusion Timestep Tokens [66.02261367232256]
Multimodal Large Language Models (MLLMs) aim to unify visual comprehension and generation.
Existing approaches rely on spatial visual tokens, where image patches are encoded and arranged according to a spatial order.
In this paper, we build a proper visual language by reconstructing diffusion timesteps to learn discrete visual tokens.
arXiv Detail & Related papers (2025-04-20T16:14:28Z) - An Empirical Study and Analysis of Text-to-Image Generation Using Large Language Model-Powered Textual Representation [21.154973705998945]
Existing methods leverage the text encoder of the CLIP model to represent input prompts.
Large Language Models (LLMs) offer multilingual input, accommodate longer context, and achieve superior text representation.
We propose a lightweight adapter that enables fast training of the text-to-image model using the textual representations from LLMs.
arXiv Detail & Related papers (2024-05-21T16:35:02Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
We propose bfAnyRef, a general MLLM model that can generate pixel-wise object perceptions and natural language descriptions from multi-modality references.
Our model achieves state-of-the-art results across multiple benchmarks, including diverse modality referring segmentation and region-level referring expression generation.
arXiv Detail & Related papers (2024-03-05T13:45:46Z) - MLLMs-Augmented Visual-Language Representation Learning [70.5293060238008]
We demonstrate that Multi-modal Large Language Models (MLLMs) can enhance visual-language representation learning.
Our approach is simple, utilizing MLLMs to extend multiple diverse captions for each image.
We propose "text shearing" to maintain the quality and availability of extended captions.
arXiv Detail & Related papers (2023-11-30T18:05:52Z) - LLMGA: Multimodal Large Language Model based Generation Assistant [53.150283805515926]
We introduce a Multimodal Large Language Model-based Generation Assistant (LLMGA) to assist users in image generation and editing.
We train the MLLM to grasp the properties of image generation and editing, enabling it to generate detailed prompts.
Extensive results show that LLMGA has promising generation and editing capabilities and can enable more flexible and expansive applications.
arXiv Detail & Related papers (2023-11-27T13:37:26Z) - MiniGPT-5: Interleaved Vision-and-Language Generation via Generative Vokens [22.802963850131306]
We introduce a novel interleaved vision-and-language generation method, centered around the concept of generative vokens.
Our method is marked by a unique two-stage training strategy for description-free multimodal generation.
Our model, MiniGPT-5, exhibits substantial improvement over the baseline models on multimodal generation datasets.
arXiv Detail & Related papers (2023-10-03T17:49:04Z) - Position-Enhanced Visual Instruction Tuning for Multimodal Large
Language Models [50.07056960586183]
We propose Position-enhanced Visual Instruction Tuning (PVIT) to extend the functionality of Multimodal Large Language Models (MLLMs)
This integration promotes a more detailed comprehension of images for the MLLM.
We present both quantitative experiments and qualitative analysis that demonstrate the superiority of the proposed model.
arXiv Detail & Related papers (2023-08-25T15:33:47Z) - Generating Images with Multimodal Language Models [78.6660334861137]
We propose a method to fuse frozen text-only large language models with pre-trained image encoder and decoder models.
Our model demonstrates a wide suite of multimodal capabilities: image retrieval, novel image generation, and multimodal dialogue.
arXiv Detail & Related papers (2023-05-26T19:22:03Z) - Fusion Models for Improved Visual Captioning [18.016295296424413]
This paper proposes a generic multimodal model fusion framework for caption generation and emendation.
We employ the same fusion strategies to integrate a pretrained Masked Language Model (MLM) with a visual captioning model, viz. Show, Attend, and Tell.
Our caption emendation experiments on three benchmark image captioning datasets, viz. Flickr8k, Flickr30k, and MSCOCO, show improvements over the baseline.
arXiv Detail & Related papers (2020-10-28T21:55:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.