MA-GTS: A Multi-Agent Framework for Solving Complex Graph Problems in Real-World Applications
- URL: http://arxiv.org/abs/2502.18540v1
- Date: Tue, 25 Feb 2025 08:34:00 GMT
- Title: MA-GTS: A Multi-Agent Framework for Solving Complex Graph Problems in Real-World Applications
- Authors: Zike Yuan, Ming Liu, Hui Wang, Bing Qin,
- Abstract summary: Graph-theoretic problems arise in real-world applications like logistics, communication networks, and traffic optimization.<n>Large language models (LLMs) offer potential solutions but face challenges, including limited accuracy and input length constraints.<n>We propose MA-GTS, a multi-agent framework that decomposes these complex problems through agent collaboration.
- Score: 22.705728671135834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph-theoretic problems arise in real-world applications like logistics, communication networks, and traffic optimization. These problems are often complex, noisy, and irregular, posing challenges for traditional algorithms. Large language models (LLMs) offer potential solutions but face challenges, including limited accuracy and input length constraints. To address these challenges, we propose MA-GTS (Multi-Agent Graph Theory Solver), a multi-agent framework that decomposes these complex problems through agent collaboration. MA-GTS maps the implicitly expressed text-based graph data into clear, structured graph representations and dynamically selects the most suitable algorithm based on problem constraints and graph structure scale. This approach ensures that the solution process remains efficient and the resulting reasoning path is interpretable. We validate MA-GTS using the G-REAL dataset, a real-world-inspired graph theory dataset we created. Experimental results show that MA-GTS outperforms state-of-the-art approaches in terms of efficiency, accuracy, and scalability, with strong results across multiple benchmarks (G-REAL 94.2%, GraCoRe 96.9%, NLGraph 98.4%).MA-GTS is open-sourced at https://github.com/ZIKEYUAN/MA-GTS.git.
Related papers
- Graph-Grounded LLMs: Leveraging Graphical Function Calling to Minimize LLM Hallucinations [8.07547612687425]
Graphs are integral to a wide range of applications, including motion planning for autonomous vehicles, social networks, scene understanding, and knowledge graphs.
We propose Graph-Grounded LLMs, a system that improves LLM performance on graph-related tasks by integrating a graph library through function calls.
We demonstrate significant reductions in hallucinations and improved mathematical accuracy in solving graph-based problems, as evidenced by the performance on the NLGraph benchmark.
arXiv Detail & Related papers (2025-03-13T22:57:28Z) - Bridging Visualization and Optimization: Multimodal Large Language Models on Graph-Structured Combinatorial Optimization [56.17811386955609]
Graph-structured challenges are inherently difficult due to their nonlinear and intricate nature.
In this study, we propose transforming graphs into images to preserve their higher-order structural features accurately.
By combining the innovative paradigm powered by multimodal large language models with simple search techniques, we aim to develop a novel and effective framework.
arXiv Detail & Related papers (2025-01-21T08:28:10Z) - Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)<n>This framework provides a standardized setting to evaluate GNNs across diverse datasets.<n>We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - GCoder: Improving Large Language Model for Generalized Graph Problem Solving [38.9131866084555]
Large Language Models (LLMs) have demonstrated strong reasoning abilities, making them suitable for complex tasks such as graph computation.
We introduce GCoder, a code-based LLM designed to enhance problem-solving in generalized graph problems.
Our method involves constructing an extensive training dataset, GraphWild, featuring diverse graph formats and algorithms.
arXiv Detail & Related papers (2024-10-24T18:40:36Z) - What Do LLMs Need to Understand Graphs: A Survey of Parametric Representation of Graphs [69.48708136448694]
Large language models (LLMs) are reorganizing in the AI community for their expected reasoning and inference abilities.
We believe this kind of parametric representation of graphs, graph laws, can be a solution for making LLMs understand graph data as the input.
arXiv Detail & Related papers (2024-10-16T00:01:31Z) - Scalable and Accurate Graph Reasoning with LLM-based Multi-Agents [27.4884498301785]
We introduce GraphAgent-Reasoner, a fine-tuning-free framework for explicit and precise graph reasoning.
Inspired by distributed graph computation theory, our framework decomposes graph problems into smaller, node-centric tasks that are distributed among multiple agents.
Our framework demonstrates the capability to handle real-world graph reasoning applications such as webpage importance analysis.
arXiv Detail & Related papers (2024-10-07T15:34:14Z) - G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
We develop a flexible question-answering framework targeting real-world textual graphs.
We introduce the first retrieval-augmented generation (RAG) approach for general textual graphs.
G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem.
arXiv Detail & Related papers (2024-02-12T13:13:04Z) - MGNet: Learning Correspondences via Multiple Graphs [78.0117352211091]
Learning correspondences aims to find correct correspondences from the initial correspondence set with an uneven correspondence distribution and a low inlier rate.
Recent advances usually use graph neural networks (GNNs) to build a single type of graph or stack local graphs into the global one to complete the task.
We propose MGNet to effectively combine multiple complementary graphs.
arXiv Detail & Related papers (2024-01-10T07:58:44Z) - Symmetry-preserving graph attention network to solve routing problems at
multiple resolutions [1.9304772860080408]
We introduce the first-ever completely equivariant model and training to solve problems.
It is essential to capture the multiscale structure of the input graph.
We propose a Multiresolution scheme in combination with Equi Graph Attention network (mEGAT) architecture.
arXiv Detail & Related papers (2023-10-24T06:22:20Z) - Can Language Models Solve Graph Problems in Natural Language? [51.28850846990929]
Large language models (LLMs) are increasingly adopted for a variety of tasks with implicit graphical structures.
We propose NLGraph, a benchmark of graph-based problem solving simulating in natural language.
arXiv Detail & Related papers (2023-05-17T08:29:21Z) - Graph Denoising with Framelet Regularizer [25.542429117462547]
This paper tailors regularizers for graph data in terms of both feature and structure noises.
Our model achieves significantly better performance compared with popular graph convolutions even when the graph is heavily contaminated.
arXiv Detail & Related papers (2021-11-05T05:17:23Z) - Node Feature Extraction by Self-Supervised Multi-scale Neighborhood
Prediction [123.20238648121445]
We propose a new self-supervised learning framework, Graph Information Aided Node feature exTraction (GIANT)
GIANT makes use of the eXtreme Multi-label Classification (XMC) formalism, which is crucial for fine-tuning the language model based on graph information.
We demonstrate the superior performance of GIANT over the standard GNN pipeline on Open Graph Benchmark datasets.
arXiv Detail & Related papers (2021-10-29T19:55:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.