Towards Optimal Multi-draft Speculative Decoding
- URL: http://arxiv.org/abs/2502.18779v1
- Date: Wed, 26 Feb 2025 03:22:44 GMT
- Title: Towards Optimal Multi-draft Speculative Decoding
- Authors: Zhengmian Hu, Tong Zheng, Vignesh Viswanathan, Ziyi Chen, Ryan A. Rossi, Yihan Wu, Dinesh Manocha, Heng Huang,
- Abstract summary: Multi-Draft Speculative Decoding (MDSD) is a recent approach where, when generating each token, a small draft model generates multiple drafts.<n>This paper discusses the dual of the optimal transport problem, providing a way to efficiently compute the optimal acceptance rate.
- Score: 102.67837141152232
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large Language Models (LLMs) have become an indispensable part of natural language processing tasks. However, autoregressive sampling has become an efficiency bottleneck. Multi-Draft Speculative Decoding (MDSD) is a recent approach where, when generating each token, a small draft model generates multiple drafts, and the target LLM verifies them in parallel, ensuring that the final output conforms to the target model distribution. The two main design choices in MDSD are the draft sampling method and the verification algorithm. For a fixed draft sampling method, the optimal acceptance rate is a solution to an optimal transport problem, but the complexity of this problem makes it difficult to solve for the optimal acceptance rate and measure the gap between existing verification algorithms and the theoretical upper bound. This paper discusses the dual of the optimal transport problem, providing a way to efficiently compute the optimal acceptance rate. For the first time, we measure the theoretical upper bound of MDSD efficiency for vocabulary sizes in the thousands and quantify the gap between existing verification algorithms and this bound. We also compare different draft sampling methods based on their optimal acceptance rates. Our results show that the draft sampling method strongly influences the optimal acceptance rate, with sampling without replacement outperforming sampling with replacement. Additionally, existing verification algorithms do not reach the theoretical upper bound for both without replacement and with replacement sampling. Our findings suggest that carefully designed draft sampling methods can potentially improve the optimal acceptance rate and enable the development of verification algorithms that closely match the theoretical upper bound.
Related papers
- Adaptive Sampled Softmax with Inverted Multi-Index: Methods, Theory and Applications [79.53938312089308]
The MIDX-Sampler is a novel adaptive sampling strategy based on an inverted multi-index approach.<n>Our method is backed by rigorous theoretical analysis, addressing key concerns such as sampling bias, gradient bias, convergence rates, and generalization error bounds.
arXiv Detail & Related papers (2025-01-15T04:09:21Z) - Vector Optimization with Gaussian Process Bandits [7.049738935364297]
Learning problems in which multiple objectives must be considered simultaneously often arise in various fields, including engineering, drug design, and environmental management.
Traditional methods for dealing with multiple black-box objective functions have limitations in incorporating objective preferences and exploring the solution space accordingly.
We propose Vector Optimization with Gaussian Process (VOGP), a probably approximately correct adaptive elimination algorithm that performs black-box vector optimization using Gaussian process bandits.
arXiv Detail & Related papers (2024-12-03T14:47:46Z) - Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment [81.84950252537618]
This paper reveals a unified game-theoretic connection between iterative BOND and self-play alignment.<n>We establish a novel framework, WIN rate Dominance (WIND), with a series of efficient algorithms for regularized win rate dominance optimization.
arXiv Detail & Related papers (2024-10-28T04:47:39Z) - Multi-Draft Speculative Sampling: Canonical Architectures and Theoretical Limits [26.220189807865548]
We consider multi-draft speculative sampling, where the proposal sequences are sampled independently from different draft models.
We show that the optimal scheme can be decomposed into a two-step solution.
arXiv Detail & Related papers (2024-10-23T19:28:34Z) - OD-Stega: LLM-Based Near-Imperceptible Steganography via Optimized Distributions [7.611860976107124]
We consider coverless steganography where a Large Language Model drives an arithmetic coding decoder to generate stego-texts.
An efficient method should embed secret message bits in as few language tokens as possible, while still keeping the stego-text natural and fluent.
arXiv Detail & Related papers (2024-10-06T01:30:45Z) - Graph-Structured Speculative Decoding [52.94367724136063]
Speculative decoding has emerged as a promising technique to accelerate the inference of Large Language Models.
We introduce an innovative approach utilizing a directed acyclic graph (DAG) to manage the drafted hypotheses.
We observe a remarkable speedup of 1.73$times$ to 1.96$times$, significantly surpassing standard speculative decoding.
arXiv Detail & Related papers (2024-07-23T06:21:24Z) - Dual-Directed Algorithm Design for Efficient Pure Exploration [9.728332815218181]
We consider pure-exploration problems in the context of sequential adaptive experiments with a finite set of alternatives.<n>We formulate the problem complexity measure as a maximin optimization problem for the static fixed-budget, fixed-confidence, and posterior convergence rate settings.<n>Our algorithm attains optimality in $varepsilon$-best-arm identification (or ranking and selection with a probability of good selection guarantee) and thresholding bandits.
arXiv Detail & Related papers (2023-10-30T07:29:17Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.