Fewer May Be Better: Enhancing Offline Reinforcement Learning with Reduced Dataset
- URL: http://arxiv.org/abs/2502.18955v1
- Date: Wed, 26 Feb 2025 09:08:47 GMT
- Title: Fewer May Be Better: Enhancing Offline Reinforcement Learning with Reduced Dataset
- Authors: Yiqin Yang, Quanwei Wang, Chenghao Li, Hao Hu, Chengjie Wu, Yuhua Jiang, Dianyu Zhong, Ziyou Zhang, Qianchuan Zhao, Chongjie Zhang, Xu Bo,
- Abstract summary: offline reinforcement learning (RL) allows agents to learn from pre-collected datasets without further interaction with the environment.<n>A key, yet underexplored, challenge in offline RL is selecting an optimal subset of the offline dataset.<n>We introduce ReDOR, a method that frames dataset selection as a gradient approximation optimization problem.
- Score: 29.573555134322543
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Offline reinforcement learning (RL) represents a significant shift in RL research, allowing agents to learn from pre-collected datasets without further interaction with the environment. A key, yet underexplored, challenge in offline RL is selecting an optimal subset of the offline dataset that enhances both algorithm performance and training efficiency. Reducing dataset size can also reveal the minimal data requirements necessary for solving similar problems. In response to this challenge, we introduce ReDOR (Reduced Datasets for Offline RL), a method that frames dataset selection as a gradient approximation optimization problem. We demonstrate that the widely used actor-critic framework in RL can be reformulated as a submodular optimization objective, enabling efficient subset selection. To achieve this, we adapt orthogonal matching pursuit (OMP), incorporating several novel modifications tailored for offline RL. Our experimental results show that the data subsets identified by ReDOR not only boost algorithm performance but also do so with significantly lower computational complexity.
Related papers
- RL-Selector: Reinforcement Learning-Guided Data Selection via Redundancy Assessment [10.284993431741377]
We introduce the concept of epsilon-sample cover, which quantifies sample redundancy based on inter-sample relationships.<n>We reformulate data selection as a reinforcement learning process and propose RL-Selector.<n>Our method consistently outperforms existing state-of-the-art baselines.
arXiv Detail & Related papers (2025-06-26T06:28:56Z) - Unsupervised Data Generation for Offline Reinforcement Learning: A Perspective from Model [57.20064815347607]
offline reinforcement learning (RL) recently gains growing interests from RL researchers.<n>The performance of offline RL suffers from the out-of-distribution problem, which can be corrected by feedback in online RL.<n>In this paper, we first build a bridge over the batch data and the performance of offline RL algorithms theoretically.<n>We show that in task-agnostic settings, a series of policies trained by unsupervised RL can minimize the worst-case regret in the performance gap.
arXiv Detail & Related papers (2025-06-24T14:08:36Z) - Sparse-Reg: Improving Sample Complexity in Offline Reinforcement Learning using Sparsity [40.998188469865184]
"Sparse-Reg" is a regularization technique based on sparsity to mitigate overfitting in offline reinforcement learning.<n>We show that offline RL algorithms can overfit on small datasets, resulting in poor performance.
arXiv Detail & Related papers (2025-06-20T16:57:59Z) - Improving Data Efficiency for LLM Reinforcement Fine-tuning Through Difficulty-targeted Online Data Selection and Rollout Replay [61.823835392216544]
Reinforcement learning (RL) has become an effective approach for fine-tuning large language models (LLMs)<n>We propose two techniques to improve data efficiency in LLM RL fine-tuning: difficulty-targeted online data selection and rollout replay.<n>Our method reduces RL fine-tuning time by 25% to 65% to reach the same level of performance as the original GRPO algorithm.
arXiv Detail & Related papers (2025-06-05T17:55:43Z) - D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning [99.33607114541861]
We propose a new benchmark for offline RL that focuses on realistic simulations of robotic manipulation and locomotion environments.
Our proposed benchmark covers state-based and image-based domains, and supports both offline RL and online fine-tuning evaluation.
arXiv Detail & Related papers (2024-08-15T22:27:00Z) - Beyond Uniform Sampling: Offline Reinforcement Learning with Imbalanced
Datasets [53.8218145723718]
offline policy learning is aimed at learning decision-making policies using existing datasets of trajectories without collecting additional data.
We argue that when a dataset is dominated by suboptimal trajectories, state-of-the-art offline RL algorithms do not substantially improve over the average return of trajectories in the dataset.
We present a realization of the sampling strategy and an algorithm that can be used as a plug-and-play module in standard offline RL algorithms.
arXiv Detail & Related papers (2023-10-06T17:58:14Z) - Look Beneath the Surface: Exploiting Fundamental Symmetry for
Sample-Efficient Offline RL [29.885978495034703]
offline reinforcement learning (RL) offers an appealing approach to real-world tasks by learning policies from pre-collected datasets.
However, the performance of existing offline RL algorithms heavily depends on the scale and state-action space coverage of datasets.
We provide a new insight that leveraging the fundamental symmetry of system dynamics can substantially enhance offline RL performance under small datasets.
arXiv Detail & Related papers (2023-06-07T07:51:05Z) - Efficient Online Reinforcement Learning with Offline Data [78.92501185886569]
We show that we can simply apply existing off-policy methods to leverage offline data when learning online.
We extensively ablate these design choices, demonstrating the key factors that most affect performance.
We see that correct application of these simple recommendations can provide a $mathbf2.5times$ improvement over existing approaches.
arXiv Detail & Related papers (2023-02-06T17:30:22Z) - Discriminator-Weighted Offline Imitation Learning from Suboptimal
Demonstrations [5.760034336327491]
We study the problem of offline Learning (IL) where an agent aims to learn an optimal expert behavior policy without additional online environment interactions.
We introduce an additional discriminator to distinguish expert and non-expert data.
Our proposed algorithm achieves higher returns and faster training speed compared to baseline algorithms.
arXiv Detail & Related papers (2022-07-20T17:29:04Z) - Don't Change the Algorithm, Change the Data: Exploratory Data for
Offline Reinforcement Learning [147.61075994259807]
We propose Exploratory data for Offline RL (ExORL), a data-centric approach to offline RL.
ExORL first generates data with unsupervised reward-free exploration, then relabels this data with a downstream reward before training a policy with offline RL.
We find that exploratory data allows vanilla off-policy RL algorithms, without any offline-specific modifications, to outperform or match state-of-the-art offline RL algorithms on downstream tasks.
arXiv Detail & Related papers (2022-01-31T18:39:27Z) - Behavioral Priors and Dynamics Models: Improving Performance and Domain
Transfer in Offline RL [82.93243616342275]
We introduce Offline Model-based RL with Adaptive Behavioral Priors (MABE)
MABE is based on the finding that dynamics models, which support within-domain generalization, and behavioral priors, which support cross-domain generalization, are complementary.
In experiments that require cross-domain generalization, we find that MABE outperforms prior methods.
arXiv Detail & Related papers (2021-06-16T20:48:49Z) - Critic Regularized Regression [70.8487887738354]
We propose a novel offline RL algorithm to learn policies from data using a form of critic-regularized regression (CRR)
We find that CRR performs surprisingly well and scales to tasks with high-dimensional state and action spaces.
arXiv Detail & Related papers (2020-06-26T17:50:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.