A Dual-Purpose Framework for Backdoor Defense and Backdoor Amplification in Diffusion Models
- URL: http://arxiv.org/abs/2502.19047v2
- Date: Sun, 02 Mar 2025 13:52:23 GMT
- Title: A Dual-Purpose Framework for Backdoor Defense and Backdoor Amplification in Diffusion Models
- Authors: Vu Tuan Truong, Long Bao Le,
- Abstract summary: PureDiffusion is a dual-purpose framework that simultaneously serves two contrasting roles: backdoor defense and backdoor attack amplification.<n>For defense, we introduce two novel loss functions to invert backdoor triggers embedded in diffusion models.<n>For attack amplification, we describe how our trigger inversion algorithm can be used to reinforce the original trigger embedded in the backdoored diffusion model.
- Score: 5.957580737396457
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models have emerged as state-of-the-art generative frameworks, excelling in producing high-quality multi-modal samples. However, recent studies have revealed their vulnerability to backdoor attacks, where backdoored models generate specific, undesirable outputs called backdoor target (e.g., harmful images) when a pre-defined trigger is embedded to their inputs. In this paper, we propose PureDiffusion, a dual-purpose framework that simultaneously serves two contrasting roles: backdoor defense and backdoor attack amplification. For defense, we introduce two novel loss functions to invert backdoor triggers embedded in diffusion models. The first leverages trigger-induced distribution shifts across multiple timesteps of the diffusion process, while the second exploits the denoising consistency effect when a backdoor is activated. Once an accurate trigger inversion is achieved, we develop a backdoor detection method that analyzes both the inverted trigger and the generated backdoor targets to identify backdoor attacks. In terms of attack amplification with the role of an attacker, we describe how our trigger inversion algorithm can be used to reinforce the original trigger embedded in the backdoored diffusion model. This significantly boosts attack performance while reducing the required backdoor training time. Experimental results demonstrate that PureDiffusion achieves near-perfect detection accuracy, outperforming existing defenses by a large margin, particularly against complex trigger patterns. Additionally, in an attack scenario, our attack amplification approach elevates the attack success rate (ASR) of existing backdoor attacks to nearly 100\% while reducing training time by up to 20x.
Related papers
- Towards Invisible Backdoor Attack on Text-to-Image Diffusion Model [70.03122709795122]
Backdoor attacks targeting text-to-image diffusion models have advanced rapidly.
Current backdoor samples often exhibit two key abnormalities compared to benign samples.
We propose a novel Invisible Backdoor Attack (IBA) to enhance the stealthiness of backdoor samples.
arXiv Detail & Related papers (2025-03-22T10:41:46Z) - A4O: All Trigger for One sample [10.78460062665304]
We show that proposed backdoor defenders often rely on the assumption that triggers would appear in a unified way.<n>In this paper, we show that this naive assumption can create a loophole, allowing more sophisticated backdoor attacks to bypass.<n>We design a novel backdoor attack mechanism that incorporates multiple types of backdoor triggers, focusing on stealthiness and effectiveness.
arXiv Detail & Related papers (2025-01-13T10:38:58Z) - An Effective and Resilient Backdoor Attack Framework against Deep Neural Networks and Vision Transformers [22.77836113915616]
We propose a novel attention-based mask generation methodology that searches for the optimal trigger shape and location.<n>We also introduce a Quality-of-Experience term into the loss function and carefully adjust the transparency value of the trigger.<n>Our proposed backdoor attack framework also showcases robustness against state-of-the-art backdoor defenses.
arXiv Detail & Related papers (2024-12-09T02:03:27Z) - Long-Tailed Backdoor Attack Using Dynamic Data Augmentation Operations [50.1394620328318]
Existing backdoor attacks mainly focus on balanced datasets.
We propose an effective backdoor attack named Dynamic Data Augmentation Operation (D$2$AO)
Our method can achieve the state-of-the-art attack performance while preserving the clean accuracy.
arXiv Detail & Related papers (2024-10-16T18:44:22Z) - PureDiffusion: Using Backdoor to Counter Backdoor in Generative Diffusion Models [5.957580737396457]
Diffusion models (DMs) are advanced deep learning models that achieved state-of-the-art capability on a wide range of generative tasks.
Recent studies have shown their vulnerability regarding backdoor attacks, in which backdoored DMs consistently generate a designated result called backdoor target.
We introduce PureDiffusion, a novel backdoor defense framework that can efficiently detect backdoor attacks by inverting backdoor triggers embedded in DMs.
arXiv Detail & Related papers (2024-09-20T23:19:26Z) - Diff-Cleanse: Identifying and Mitigating Backdoor Attacks in Diffusion Models [3.134071086568745]
Diffusion models (DMs) are regarded as one of the most advanced generative models today.
Recent studies suggest that DMs are vulnerable to backdoor attacks.
This vulnerability poses substantial risks, including reputational damage to model owners.
We introduce Diff-Cleanse, a novel two-stage backdoor defense framework specifically designed for DMs.
arXiv Detail & Related papers (2024-07-31T03:54:41Z) - T2IShield: Defending Against Backdoors on Text-to-Image Diffusion Models [70.03122709795122]
We propose a comprehensive defense method named T2IShield to detect, localize, and mitigate backdoor attacks.
We find the "Assimilation Phenomenon" on the cross-attention maps caused by the backdoor trigger.
For backdoor sample detection, T2IShield achieves a detection F1 score of 88.9$%$ with low computational cost.
arXiv Detail & Related papers (2024-07-05T01:53:21Z) - Dual Model Replacement:invisible Multi-target Backdoor Attack based on Federal Learning [21.600003684064706]
This paper designs a backdoor attack method based on federated learning.
aiming at the concealment of the backdoor trigger, a TrojanGan steganography model with encoder-decoder structure is designed.
A dual model replacement backdoor attack algorithm based on federated learning is designed.
arXiv Detail & Related papers (2024-04-22T07:44:02Z) - From Shortcuts to Triggers: Backdoor Defense with Denoised PoE [51.287157951953226]
Language models are often at risk of diverse backdoor attacks, especially data poisoning.
Existing backdoor defense methods mainly focus on backdoor attacks with explicit triggers.
We propose an end-to-end ensemble-based backdoor defense framework, DPoE, to defend various backdoor attacks.
arXiv Detail & Related papers (2023-05-24T08:59:25Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
Deep neural networks (DNNs) are vulnerable to backdoor attacks.
backdoor attack is an emerging yet threatening training-phase threat.
We propose a sparse and invisible backdoor attack (SIBA)
arXiv Detail & Related papers (2023-05-11T10:05:57Z) - Rethinking the Trigger of Backdoor Attack [83.98031510668619]
Currently, most of existing backdoor attacks adopted the setting of emphstatic trigger, $i.e.,$ triggers across the training and testing images follow the same appearance and are located in the same area.
We demonstrate that such an attack paradigm is vulnerable when the trigger in testing images is not consistent with the one used for training.
arXiv Detail & Related papers (2020-04-09T17:19:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.