The NeRF Signature: Codebook-Aided Watermarking for Neural Radiance Fields
- URL: http://arxiv.org/abs/2502.19125v1
- Date: Wed, 26 Feb 2025 13:27:49 GMT
- Title: The NeRF Signature: Codebook-Aided Watermarking for Neural Radiance Fields
- Authors: Ziyuan Luo, Anderson Rocha, Boxin Shi, Qing Guo, Haoliang Li, Renjie Wan,
- Abstract summary: We propose NeRF Signature, a novel watermarking method for NeRF.<n>We employ a Codebook-aided Signature Embedding (CSE) that does not alter the model structure.<n>We also introduce a joint pose-patch encryption watermarking strategy to hide signatures into patches.
- Score: 77.76790894639036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Radiance Fields (NeRF) have been gaining attention as a significant form of 3D content representation. With the proliferation of NeRF-based creations, the need for copyright protection has emerged as a critical issue. Although some approaches have been proposed to embed digital watermarks into NeRF, they often neglect essential model-level considerations and incur substantial time overheads, resulting in reduced imperceptibility and robustness, along with user inconvenience. In this paper, we extend the previous criteria for image watermarking to the model level and propose NeRF Signature, a novel watermarking method for NeRF. We employ a Codebook-aided Signature Embedding (CSE) that does not alter the model structure, thereby maintaining imperceptibility and enhancing robustness at the model level. Furthermore, after optimization, any desired signatures can be embedded through the CSE, and no fine-tuning is required when NeRF owners want to use new binary signatures. Then, we introduce a joint pose-patch encryption watermarking strategy to hide signatures into patches rendered from a specific viewpoint for higher robustness. In addition, we explore a Complexity-Aware Key Selection (CAKS) scheme to embed signatures in high visual complexity patches to enhance imperceptibility. The experimental results demonstrate that our method outperforms other baseline methods in terms of imperceptibility and robustness. The source code is available at: https://github.com/luo-ziyuan/NeRF_Signature.
Related papers
- Gaussian Shading++: Rethinking the Realistic Deployment Challenge of Performance-Lossless Image Watermark for Diffusion Models [66.54457339638004]
Copyright protection and inappropriate content generation pose challenges for the practical implementation of diffusion models.
We propose a diffusion model watermarking method tailored for real-world deployment.
Gaussian Shading++ not only maintains performance losslessness but also outperforms existing methods in terms of robustness.
arXiv Detail & Related papers (2025-04-21T11:18:16Z) - MultiNeRF: Multiple Watermark Embedding for Neural Radiance Fields [13.564334218037777]
MultiNeRF embeds multiple uniquely keyed watermarks within images rendered by a single Neural Radiance Field (NeRF) model.
Our approach extends the TensoRF NeRF model by incorporating a dedicated watermark grid alongside the existing geometry and appearance grids.
We propose a FiLM-based conditional modulation mechanism that dynamically activates watermarks based on input identifiers.
arXiv Detail & Related papers (2025-04-03T12:06:04Z) - RoboSignature: Robust Signature and Watermarking on Network Attacks [0.5461938536945723]
We present a novel adversarial fine-tuning attack that disrupts the model's ability to embed the intended watermark.<n>Our findings emphasize the importance of anticipating and defending against potential vulnerabilities in generative systems.
arXiv Detail & Related papers (2024-12-22T04:36:27Z) - Protecting NeRFs' Copyright via Plug-And-Play Watermarking Base Model [29.545874014535297]
Neural Radiance Fields (NeRFs) have become a key method for 3D scene representation.
We propose textbfNeRFProtector, which adopts a plug-and-play strategy to protect NeRF's copyright during its creation.
arXiv Detail & Related papers (2024-07-10T15:06:52Z) - AquaLoRA: Toward White-box Protection for Customized Stable Diffusion Models via Watermark LoRA [67.68750063537482]
Diffusion models have achieved remarkable success in generating high-quality images.
Recent works aim to let SD models output watermarked content for post-hoc forensics.
We propose textttmethod as the first implementation under this scenario.
arXiv Detail & Related papers (2024-05-18T01:25:47Z) - WateRF: Robust Watermarks in Radiance Fields for Protection of Copyrights [10.136998438185882]
We introduce an innovative watermarking method that can be employed in both representations of NeRF.
This is achieved by fine-tuning NeRF to embed binary messages in the rendering process.
We evaluate our method in three different aspects: capacity, invisibility, and robustness of the embedded watermarks in the 2D-rendered images.
arXiv Detail & Related papers (2024-05-03T12:56:34Z) - Gaussian Shading: Provable Performance-Lossless Image Watermarking for Diffusion Models [71.13610023354967]
Copyright protection and inappropriate content generation pose challenges for the practical implementation of diffusion models.
We propose a diffusion model watermarking technique that is both performance-lossless and training-free.
arXiv Detail & Related papers (2024-04-07T13:30:10Z) - IPR-NeRF: Ownership Verification meets Neural Radiance Field [100.76162575686368]
This paper proposes a comprehensive intellectual property (IP) protection framework for the NeRF model in both black-box and white-box settings.
In the black-box setting, a diffusion-based solution is introduced to embed and extract the watermark.
In the white-box setting, a designated digital signature is embedded into the weights of the NeRF model by adopting the sign loss objective.
arXiv Detail & Related papers (2024-01-17T01:33:40Z) - Exploring Structure Consistency for Deep Model Watermarking [122.38456787761497]
The intellectual property (IP) of Deep neural networks (DNNs) can be easily stolen'' by surrogate model attack.
We propose a new watermarking methodology, namely structure consistency'', based on which a new deep structure-aligned model watermarking algorithm is designed.
arXiv Detail & Related papers (2021-08-05T04:27:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.