Langevin Multiplicative Weights Update with Applications in Polynomial Portfolio Management
- URL: http://arxiv.org/abs/2502.19210v2
- Date: Mon, 03 Mar 2025 15:32:09 GMT
- Title: Langevin Multiplicative Weights Update with Applications in Polynomial Portfolio Management
- Authors: Yi Feng, Xiao Wang, Tian Xie,
- Abstract summary: We show that LMvinvin based gradient local minima with a non-asymptotic convergence analysis.<n>We show that LMvinvin algorithm is provably convergent global minima with a non-asymptotic convergence analysis.
- Score: 14.310970006771717
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider nonconvex optimization problem over simplex, and more generally, a product of simplices. We provide an algorithm, Langevin Multiplicative Weights Update (LMWU) for solving global optimization problems by adding a noise scaling with the non-Euclidean geometry in the simplex. Non-convex optimization has been extensively studied by machine learning community due to its application in various scenarios such as neural network approximation and finding Nash equilibrium. Despite recent progresses on provable guarantee of escaping and avoiding saddle point (convergence to local minima) and global convergence of Langevin gradient based method without constraints, the global optimization with constraints is less studied. We show that LMWU algorithm is provably convergent to interior global minima with a non-asymptotic convergence analysis. We verify the efficiency of the proposed algorithm in real data set from polynomial portfolio management, where optimization of a highly non-linear objective function plays a crucial role.
Related papers
- Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
We develop an adaptive inexact Newton method for equality-constrained nonlinear, nonIBS optimization problems.
We demonstrate the superior performance of our method on benchmark nonlinear problems, constrained logistic regression with data from LVM, and a PDE-constrained problem.
arXiv Detail & Related papers (2023-05-28T06:33:37Z) - Can Decentralized Stochastic Minimax Optimization Algorithms Converge
Linearly for Finite-Sum Nonconvex-Nonconcave Problems? [56.62372517641597]
Decentralized minimax optimization has been actively studied in the past few years due to its application in a wide range machine learning.
This paper develops two novel decentralized minimax optimization algorithms for the non-strongly-nonconcave problem.
arXiv Detail & Related papers (2023-04-24T02:19:39Z) - Near-Optimal Decentralized Momentum Method for Nonconvex-PL Minimax
Problems [39.197569803430646]
Minimax optimization plays an important role in many machine learning tasks such as adversarial networks (GANs) and adversarial training.
Although recently a wide variety of optimization methods have been proposed to solve the minimax problems, most of them ignore the distributed setting.
arXiv Detail & Related papers (2023-04-21T11:38:41Z) - A framework for bilevel optimization that enables stochastic and global variance reduction algorithms [21.67411847762289]
Bilevel optimization is a problem of minimizing a value function which involves the arg-minimum of another function.<n>We introduce a novel framework, in which the solution of the inner problem, the solution of the linear system, and the main variable evolve at the same time.<n>We demonstrate that SABA, an adaptation of the celebrated SAGA algorithm in our framework, has $O(frac1T)$ convergence rate.
arXiv Detail & Related papers (2022-01-31T18:17:25Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
We propose a dissipative extension of Dirac's theory of constrained Hamiltonian systems as a general framework for solving optimization problems.
Our class of (accelerated) algorithms are not only simple and efficient but also applicable to a broad range of contexts.
arXiv Detail & Related papers (2021-07-23T13:43:34Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
Motivated by recent increased interest in analysis of optimization algorithms for non- optimization in deep networks and other problems in data, we give an overview of recent results of theoretical optimization algorithms for non- optimization.
arXiv Detail & Related papers (2020-12-11T08:28:51Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
We propose a generalization extraient spaces which converges to a stationary point.
The algorithm applies not only to general $p$-normed spaces, but also to general $p$-dimensional vector spaces.
arXiv Detail & Related papers (2020-10-31T21:35:42Z) - Sparse Signal Reconstruction for Nonlinear Models via Piecewise Rational
Optimization [27.080837460030583]
We propose a method to reconstruct degraded signals by a nonlinear distortion and at a limited sampling rate.
Our method formulates as a non exact fitting term and a penalization term.
It is shown how to use the problem in terms of the benefits of our simulations.
arXiv Detail & Related papers (2020-10-29T09:05:19Z) - Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave
Min-Max Problems with PL Condition [52.08417569774822]
This paper focuses on methods for solving smooth non-concave min-max problems, which have received increasing attention due to deep learning (e.g., deep AUC)
arXiv Detail & Related papers (2020-06-12T00:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.