Extreme Events of Quantum Walks on Graphs
- URL: http://arxiv.org/abs/2502.19355v1
- Date: Wed, 26 Feb 2025 17:54:03 GMT
- Title: Extreme Events of Quantum Walks on Graphs
- Authors: Nisarg Vyas, M. S. Santhanam,
- Abstract summary: We consider quantum walks on a ring lattice and a scale-free graph.<n>For both classical and quantum walks, the extreme event probability is larger for small degree nodes compared to hubs on the graph.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to the unitary evolution, quantum walks display different dynamical features from that of classical random walks. In contrast to this expectation, in this work, we show that extreme events can arise in unitary dynamics and its properties are qualitatively similar to that of random walks. We consider quantum walks on a ring lattice and a scale-free graph. Firstly, we obtain quantum version of flux-fluctuation relation and use this to define to extreme events on vertices of a graph as exceedences above the mean flux. The occurrence probability for extreme events on scale-free graphs displays a power-law with the degree of vertices, in qualitative agreement with corresponding classical random walk result. For both classical and quantum walks, the extreme event probability is larger for small degree nodes compared to hubs on the graph. Further, it is shown that extreme event probability scales with threshold used to define extreme events.
Related papers
- Non-Markovianity in Discrete-Time Open Quantum Random Walk on Arbitrary Graphs [2.867517731896504]
We present a new model of the Discrete-Time Open Quantum Walk (DTOQW) applicable to an arbitrary graph.
The dynamics is gauged by computing the coherence and fidelity at different time steps.
arXiv Detail & Related papers (2024-07-30T15:01:57Z) - A Graph Regularized Point Process Model For Event Propagation Sequence [2.9093633827040724]
Point process is the dominant paradigm for modeling event sequences occurring at irregular intervals.
We propose a Graph Regularized Point Process that characterizes the event interactions across nodes with neighbors.
By applying a graph regularization method, GRPP provides model interpretability by uncovering influence strengths between nodes.
arXiv Detail & Related papers (2022-11-21T04:49:59Z) - Key graph properties affecting transport efficiency of flip-flop Grover
percolated quantum walks [0.0]
We study quantum walks with the flip-flop shift operator and the Grover coin.
We show how the position of the source and sink together with the graph geometry and its modifications affect transport.
This gives us a deep insight into processes where elongation or addition of dead-end subgraphs may surprisingly result in enhanced transport.
arXiv Detail & Related papers (2022-02-19T11:55:21Z) - Gradient flows on graphons: existence, convergence, continuity equations [27.562307342062354]
Wasserstein gradient flows on probability measures have found a host of applications in various optimization problems.
We show that the Euclidean gradient flow of a suitable function of the edge-weights converges to a novel continuum limit given by a curve on the space of graphons.
arXiv Detail & Related papers (2021-11-18T00:36:28Z) - Graph-Theoretic Framework for Self-Testing in Bell Scenarios [37.067444579637076]
Quantum self-testing is the task of certifying quantum states and measurements using the output statistics solely.
We present a new approach for quantum self-testing in Bell non-locality scenarios.
arXiv Detail & Related papers (2021-04-27T08:15:01Z) - Hawkes Processes on Graphons [85.6759041284472]
We study Hawkes processes and their variants that are associated with Granger causality graphs.
We can generate the corresponding Hawkes processes and simulate event sequences.
We learn the proposed model by minimizing the hierarchical optimal transport distance between the generated event sequences and the observed ones.
arXiv Detail & Related papers (2021-02-04T17:09:50Z) - Continuous-time quantum walks in the presence of a quadratic
perturbation [55.41644538483948]
We address the properties of continuous-time quantum walks with Hamiltonians of the form $mathcalH= L + lambda L2$.
We consider cycle, complete, and star graphs because paradigmatic models with low/high connectivity and/or symmetry.
arXiv Detail & Related papers (2020-05-13T14:53:36Z) - Graph Hawkes Neural Network for Forecasting on Temporal Knowledge Graphs [38.56057203198837]
Hawkes process has become a standard method for modeling self-exciting event sequences with different event types.
We propose the Graph Hawkes Neural Network that can capture the dynamics of evolving graph sequences and can predict the occurrence of a fact in a future time instance.
arXiv Detail & Related papers (2020-03-30T12:56:50Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Analysis of Lackadaisical Quantum Walks [0.0]
The lackadaisical quantum walk is a quantum analogue of the lazy random walk obtained by adding a self-loop to each.
We analytically prove that lackadaisical quantum walks can find a unique marked.
vertebrae on any regular locally arc-transitive graph with constant success probability.
quadratically faster than the hitting time.
arXiv Detail & Related papers (2020-02-26T00:40:25Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.