Multi-modal Contrastive Learning for Tumor-specific Missing Modality Synthesis
- URL: http://arxiv.org/abs/2502.19390v2
- Date: Sat, 12 Apr 2025 04:37:26 GMT
- Title: Multi-modal Contrastive Learning for Tumor-specific Missing Modality Synthesis
- Authors: Minjoo Lim, Bogyeong Kang, Tae-Eui Kam,
- Abstract summary: High-quality multi-modal MRI in a clinical setting is difficult due to time constraints, high costs, and patient movement artifacts.<n>Our team, PLAVE, design a generative model for missing MRI that integrates multi-modal contrastive learning with a focus on critical tumor regions.<n>Our results in the Brain MR Image Synthesis challenge demonstrate that the proposed model excelled in generating the missing modality.
- Score: 1.4132765964347058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-modal magnetic resonance imaging (MRI) is essential for providing complementary information about brain anatomy and pathology, leading to more accurate diagnoses. However, obtaining high-quality multi-modal MRI in a clinical setting is difficult due to factors such as time constraints, high costs, and patient movement artifacts. To overcome this difficulty, there is increasing interest in developing generative models that can synthesize missing target modality images from the available source ones. Therefore, our team, PLAVE, design a generative model for missing MRI that integrates multi-modal contrastive learning with a focus on critical tumor regions. Specifically, we integrate multi-modal contrastive learning, tailored for multiple source modalities, and enhance its effectiveness by selecting features based on entropy during the contrastive learning process. Additionally, our network not only generates the missing target modality images but also predicts segmentation outputs, simultaneously. This approach improves the generator's capability to precisely generate tumor regions, ultimately improving performance in downstream segmentation tasks. By leveraging a combination of contrastive, segmentation, and additional self-representation losses, our model effectively reflects target-specific information and generate high-quality target images. Consequently, our results in the Brain MR Image Synthesis challenge demonstrate that the proposed model excelled in generating the missing modality.
Related papers
- MRGen: Segmentation Data Engine For Underrepresented MRI Modalities [59.61465292965639]
Training medical image segmentation models for rare yet clinically significant imaging modalities is challenging due to the scarcity of annotated data.
This paper investigates leveraging generative models to synthesize training data, to train segmentation models for underrepresented modalities.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - Unveiling Incomplete Modality Brain Tumor Segmentation: Leveraging Masked Predicted Auto-Encoder and Divergence Learning [6.44069573245889]
Brain tumor segmentation remains a significant challenge, particularly in the context of multi-modal magnetic resonance imaging (MRI)
We propose a novel strategy, which is called masked predicted pre-training, enabling robust feature learning from incomplete modality data.
In the fine-tuning phase, we utilize a knowledge distillation technique to align features between complete and missing modality data, simultaneously enhancing model robustness.
arXiv Detail & Related papers (2024-06-12T20:35:16Z) - Disentangled Multimodal Brain MR Image Translation via Transformer-based
Modality Infuser [12.402947207350394]
We propose a transformer-based modality infuser designed to synthesize multimodal brain MR images.
In our method, we extract modality-agnostic features from the encoder and then transform them into modality-specific features.
We carried out experiments on the BraTS 2018 dataset, translating between four MR modalities.
arXiv Detail & Related papers (2024-02-01T06:34:35Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - A Learnable Variational Model for Joint Multimodal MRI Reconstruction
and Synthesis [4.056490719080639]
We propose a novel deep-learning model for joint reconstruction and synthesis of multi-modal MRI.
The output of our model includes reconstructed images of the source modalities and high-quality image synthesized in the target modality.
arXiv Detail & Related papers (2022-04-08T01:35:19Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
We propose a novel Multi-modal Aggregation Network, named MANet, which is capable of discovering complementary representations from a fully sampled auxiliary modality.
In our MANet, the representations from the fully sampled auxiliary and undersampled target modalities are learned independently through a specific network.
Our MANet follows a hybrid domain learning framework, which allows it to simultaneously recover the frequency signal in the $k$-space domain.
arXiv Detail & Related papers (2021-10-15T13:16:59Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
We propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan.
MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations.
We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing.
arXiv Detail & Related papers (2021-07-07T19:06:34Z) - Latent Correlation Representation Learning for Brain Tumor Segmentation
with Missing MRI Modalities [2.867517731896504]
Accurately segmenting brain tumor from MR images is the key to clinical diagnostics and treatment planning.
It's common to miss some imaging modalities in clinical practice.
We present a novel brain tumor segmentation algorithm with missing modalities.
arXiv Detail & Related papers (2021-04-13T14:21:09Z) - Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement
and Gated Fusion [71.87627318863612]
We propose a novel multimodal segmentation framework which is robust to the absence of imaging modalities.
Our network uses feature disentanglement to decompose the input modalities into the modality-specific appearance code.
We validate our method on the important yet challenging multimodal brain tumor segmentation task with the BRATS challenge dataset.
arXiv Detail & Related papers (2020-02-22T14:32:04Z) - Hi-Net: Hybrid-fusion Network for Multi-modal MR Image Synthesis [143.55901940771568]
We propose a novel Hybrid-fusion Network (Hi-Net) for multi-modal MR image synthesis.
In our Hi-Net, a modality-specific network is utilized to learn representations for each individual modality.
A multi-modal synthesis network is designed to densely combine the latent representation with hierarchical features from each modality.
arXiv Detail & Related papers (2020-02-11T08:26:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.