Towards More Accurate Full-Atom Antibody Co-Design
- URL: http://arxiv.org/abs/2502.19391v1
- Date: Tue, 11 Feb 2025 13:33:28 GMT
- Title: Towards More Accurate Full-Atom Antibody Co-Design
- Authors: Jiayang Wu, Xingyi Zhang, Xiangyu Dong, Kun Xie, Ziqi Liu, Wensheng Gan, Sibo Wang, Le Song,
- Abstract summary: Co-design represents a critical frontier in drug development, where accurate prediction of structure of complementarity-determining regions is essential for targeting specific equivariants.<n>Despite recent advances in graph neural networks for antibody design, current approaches often fall short in capturing the intricate interactions that govern antibody-antigen recognition and binding specificity.<n>We present Igformer, a novel end-to-end framework that addresses these limitations through personalized antibody-antigen binding interfaces.
- Score: 44.06939390661133
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Antibody co-design represents a critical frontier in drug development, where accurate prediction of both 1D sequence and 3D structure of complementarity-determining regions (CDRs) is essential for targeting specific epitopes. Despite recent advances in equivariant graph neural networks for antibody design, current approaches often fall short in capturing the intricate interactions that govern antibody-antigen recognition and binding specificity. In this work, we present Igformer, a novel end-to-end framework that addresses these limitations through innovative modeling of antibody-antigen binding interfaces. Our approach refines the inter-graph representation by integrating personalized propagation with global attention mechanisms, enabling comprehensive capture of the intricate interplay between local chemical interactions and global conformational dependencies that characterize effective antibody-antigen binding. Through extensive validation on epitope-binding CDR design and structure prediction tasks, Igformer demonstrates significant improvements over existing methods, suggesting that explicit modeling of multi-scale residue interactions can substantially advance computational antibody design for therapeutic applications.
Related papers
- Relation-Aware Equivariant Graph Networks for Epitope-Unknown Antibody Design and Specificity Optimization [61.06622479173572]
We propose a novel Relation-Aware Design (RAAD) framework, which models antigen-antibody interactions for co-designing sequences and structures of antigen-specific CDRs.<n> Furthermore, we propose a new evaluation metric to better measure antibody specificity and develop a contrasting specificity-enhancing constraint to optimize the specificity of antibodies.
arXiv Detail & Related papers (2024-12-14T03:00:44Z) - Decoupled Sequence and Structure Generation for Realistic Antibody Design [45.72237864940556]
A dominant paradigm is to train a model to jointly generate the antibody sequence and the structure as a candidate.
We propose an antibody sequence-structure decoupling (ASSD) framework, which separates sequence generation and structure prediction.
ASSD shows improved performance in various antibody design experiments, while the composition-based objective successfully mitigates token repetition of non-autoregressive models.
arXiv Detail & Related papers (2024-02-08T13:02:05Z) - A Hierarchical Training Paradigm for Antibody Structure-sequence
Co-design [54.30457372514873]
We propose a hierarchical training paradigm (HTP) for the antibody sequence-structure co-design.
HTP consists of four levels of training stages, each corresponding to a specific protein modality.
Empirical experiments show that HTP sets the new state-of-the-art performance in the co-design problem.
arXiv Detail & Related papers (2023-10-30T02:39:15Z) - AbODE: Ab Initio Antibody Design using Conjoined ODEs [8.523238510909955]
We develop a new generative model AbODE that extends graph PDEs to accommodate both contextual information and external interactions.
We unravel fundamental connections between AbODE and temporal networks as well as graph-matching networks.
arXiv Detail & Related papers (2023-05-31T14:40:47Z) - Cross-Gate MLP with Protein Complex Invariant Embedding is A One-Shot
Antibody Designer [58.97153056120193]
The specificity of an antibody is determined by its complementarity-determining regions (CDRs)
Previous studies have utilized complex techniques to generate CDRs, but they suffer from inadequate geometric modeling.
We propose a textitsimple yet effective model that can co-design 1D sequences and 3D structures of CDRs in a one-shot manner.
arXiv Detail & Related papers (2023-04-21T13:24:26Z) - xTrimoABFold: De novo Antibody Structure Prediction without MSA [77.47606749555686]
We develop a novel model named xTrimoABFold to predict antibody structure from antibody sequence.
The model was trained end-to-end on the antibody structures in PDB by minimizing the ensemble loss of domain-specific focal loss on CDR and the frame-aligned point loss.
arXiv Detail & Related papers (2022-11-30T09:26:08Z) - Incorporating Pre-training Paradigm for Antibody Sequence-Structure
Co-design [134.65287929316673]
Deep learning-based computational antibody design has attracted popular attention since it automatically mines the antibody patterns from data that could be complementary to human experiences.
The computational methods heavily rely on high-quality antibody structure data, which is quite limited.
Fortunately, there exists a large amount of sequence data of antibodies that can help model the CDR and alleviate the reliance on structure data.
arXiv Detail & Related papers (2022-10-26T15:31:36Z) - Conditional Antibody Design as 3D Equivariant Graph Translation [28.199522831859998]
We propose Multi-channel Equivariant Attention Network (MEAN) to co-design 1D sequences and 3D structures of CDRs.
Our method significantly surpasses state-of-the-art models in sequence and structure modeling, antigen-binding CDR design, and binding affinity optimization.
arXiv Detail & Related papers (2022-08-12T01:00:59Z) - Iterative Refinement Graph Neural Network for Antibody
Sequence-Structure Co-design [35.215029426177004]
We propose a generative model to automatically design antibodies with enhanced binding specificity or neutralization capabilities.
Our method achieves superior log-likelihood on the test set and outperforms previous baselines in designing antibodies capable of neutralizing the SARS-CoV-2 virus.
arXiv Detail & Related papers (2021-10-09T18:23:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.