Fast and Accurate Antibody Sequence Design via Structure Retrieval
- URL: http://arxiv.org/abs/2502.19395v1
- Date: Tue, 11 Feb 2025 13:29:49 GMT
- Title: Fast and Accurate Antibody Sequence Design via Structure Retrieval
- Authors: Xingyi Zhang, Kun Xie, Ningqiao Huang, Wei Liu, Peilin Zhao, Sibo Wang, Kangfei Zhao, Biaobin Jiang,
- Abstract summary: Igseek is a novel structure-retrieval framework that infers sequences by similar structures from a natural antibody database.<n>Our experiments demonstrate that Igseek not only proves to be highly efficient in structural retrieval but also outperforms state-of-the-art approaches in sequence recovery for both antibodies and T-Cell Receptors.
- Score: 32.38989928131971
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in protein design have leveraged diffusion models to generate structural scaffolds, followed by a process known as protein inverse folding, which involves sequence inference on these scaffolds. However, these methodologies face significant challenges when applied to hyper-variable structures such as antibody Complementarity-Determining Regions (CDRs), where sequence inference frequently results in non-functional sequences due to hallucinations. Distinguished from prevailing protein inverse folding approaches, this paper introduces Igseek, a novel structure-retrieval framework that infers CDR sequences by retrieving similar structures from a natural antibody database. Specifically, Igseek employs a simple yet effective multi-channel equivariant graph neural network to generate high-quality geometric representations of CDR backbone structures. Subsequently, it aligns sequences of structurally similar CDRs and utilizes structurally conserved sequence motifs to enhance inference accuracy. Our experiments demonstrate that Igseek not only proves to be highly efficient in structural retrieval but also outperforms state-of-the-art approaches in sequence recovery for both antibodies and T-Cell Receptors, offering a new retrieval-based perspective for therapeutic protein design.
Related papers
- Decoupled Sequence and Structure Generation for Realistic Antibody Design [45.72237864940556]
A dominant paradigm is to train a model to jointly generate the antibody sequence and the structure as a candidate.
We propose an antibody sequence-structure decoupling (ASSD) framework, which separates sequence generation and structure prediction.
ASSD shows improved performance in various antibody design experiments, while the composition-based objective successfully mitigates token repetition of non-autoregressive models.
arXiv Detail & Related papers (2024-02-08T13:02:05Z) - Inverse folding for antibody sequence design using deep learning [2.8998926117101367]
We propose a fine-tuned folding inverse model that is specifically optimised for antibody structures.
We study the canonical conformations of complementarity-determining regions and find improved encoding of these loops into known clusters.
arXiv Detail & Related papers (2023-10-30T13:12:41Z) - A Hierarchical Training Paradigm for Antibody Structure-sequence
Co-design [54.30457372514873]
We propose a hierarchical training paradigm (HTP) for the antibody sequence-structure co-design.
HTP consists of four levels of training stages, each corresponding to a specific protein modality.
Empirical experiments show that HTP sets the new state-of-the-art performance in the co-design problem.
arXiv Detail & Related papers (2023-10-30T02:39:15Z) - Cross-Gate MLP with Protein Complex Invariant Embedding is A One-Shot
Antibody Designer [58.97153056120193]
The specificity of an antibody is determined by its complementarity-determining regions (CDRs)
Previous studies have utilized complex techniques to generate CDRs, but they suffer from inadequate geometric modeling.
We propose a textitsimple yet effective model that can co-design 1D sequences and 3D structures of CDRs in a one-shot manner.
arXiv Detail & Related papers (2023-04-21T13:24:26Z) - xTrimoABFold: De novo Antibody Structure Prediction without MSA [77.47606749555686]
We develop a novel model named xTrimoABFold to predict antibody structure from antibody sequence.
The model was trained end-to-end on the antibody structures in PDB by minimizing the ensemble loss of domain-specific focal loss on CDR and the frame-aligned point loss.
arXiv Detail & Related papers (2022-11-30T09:26:08Z) - Reprogramming Pretrained Language Models for Antibody Sequence Infilling [72.13295049594585]
Computational design of antibodies involves generating novel and diverse sequences, while maintaining structural consistency.
Recent deep learning models have shown impressive results, however the limited number of known antibody sequence/structure pairs frequently leads to degraded performance.
In our work we address this challenge by leveraging Model Reprogramming (MR), which repurposes pretrained models on a source language to adapt to the tasks that are in a different language and have scarce data.
arXiv Detail & Related papers (2022-10-05T20:44:55Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
We present NeuralPLexer, a computational approach that can directly predict protein-ligand complex structures.
Our study suggests that a data-driven approach can capture the structural cooperativity between proteins and small molecules, showing promise in accelerating the design of enzymes, drug molecules, and beyond.
arXiv Detail & Related papers (2022-09-30T01:46:38Z) - Iterative Refinement Graph Neural Network for Antibody
Sequence-Structure Co-design [35.215029426177004]
We propose a generative model to automatically design antibodies with enhanced binding specificity or neutralization capabilities.
Our method achieves superior log-likelihood on the test set and outperforms previous baselines in designing antibodies capable of neutralizing the SARS-CoV-2 virus.
arXiv Detail & Related papers (2021-10-09T18:23:32Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
We propose a fully-differentiable approach for protein structure optimization, guided by a data-driven generative network.
Our EBM-Fold approach can efficiently produce high-quality decoys, compared against traditional Rosetta-based structure optimization routines.
arXiv Detail & Related papers (2021-05-11T03:40:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.