Learning Code-Edit Embedding to Model Student Debugging Behavior
- URL: http://arxiv.org/abs/2502.19407v2
- Date: Tue, 29 Apr 2025 20:44:04 GMT
- Title: Learning Code-Edit Embedding to Model Student Debugging Behavior
- Authors: Hasnain Heickal, Andrew Lan,
- Abstract summary: We propose an encoder-decoder-based model that learns meaningful code-edit embeddings between consecutive student code submissions.<n>It enables personalized next-step code suggestions that maintain the student's coding style while improving test case correctness.
- Score: 2.1485350418225244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Providing effective feedback for programming assignments in computer science education can be challenging: students solve problems by iteratively submitting code, executing it, and using limited feedback from the compiler or the auto-grader to debug. Analyzing student debugging behavior in this process may reveal important insights into their knowledge and inform better personalized support tools. In this work, we propose an encoder-decoder-based model that learns meaningful code-edit embeddings between consecutive student code submissions, to capture their debugging behavior. Our model leverages information on whether a student code submission passes each test case to fine-tune large language models (LLMs) to learn code editing representations. It enables personalized next-step code suggestions that maintain the student's coding style while improving test case correctness. Our model also enables us to analyze student code-editing patterns to uncover common student errors and debugging behaviors, using clustering techniques. Experimental results on a real-world student code submission dataset demonstrate that our model excels at code reconstruction and personalized code suggestion while revealing interesting patterns in student debugging behavior.
Related papers
- BugSpotter: Automated Generation of Code Debugging Exercises [22.204802715829615]
This paper introduces BugSpotter, a tool to generate buggy code from a problem description and verify the synthesized bugs via a test suite.
Students interact with BugSpotter by designing failing test cases, where the buggy code's output differs from the expected result as defined by the problem specification.
arXiv Detail & Related papers (2024-11-21T16:56:33Z) - Test Case-Informed Knowledge Tracing for Open-ended Coding Tasks [42.22663501257155]
Open-ended coding tasks are common in computer science education.<n>Traditional knowledge tracing (KT) models that only analyze response correctness may not fully capture nuances in student knowledge from student code.<n>We introduce Test case-Informed Knowledge Tracing for Open-ended Coding (TIKTOC), a framework to simultaneously analyze and predict both open-ended student code and whether the code passes each test case.
arXiv Detail & Related papers (2024-09-28T03:13:40Z) - A Proposal for a Debugging Learning Support Environment for Undergraduate Students Majoring in Computer Science [0.0]
Students do not know how to use a debugger or have never used one.
We implemented a function in Scratch that allows for self-learning of correct breakpoint placement.
arXiv Detail & Related papers (2024-07-25T03:34:19Z) - Leveraging Print Debugging to Improve Code Generation in Large Language
Models [63.63160583432348]
Large language models (LLMs) have made significant progress in code generation tasks.
But their performance in tackling programming problems with complex data structures and algorithms remains suboptimal.
We propose an in-context learning approach that guides LLMs to debug by using a "print debug" method.
arXiv Detail & Related papers (2024-01-10T18:37:59Z) - NuzzleBug: Debugging Block-Based Programs in Scratch [11.182625995483862]
NuzzleBug is an extension of the popular block-based programming environment Scratch.
It is an interrogative debugger that enables to ask questions about executions and provides answers.
We find that teachers consider NuzzleBug to be useful, and children can use it to debug faulty programs effectively.
arXiv Detail & Related papers (2023-09-25T18:56:26Z) - A Static Evaluation of Code Completion by Large Language Models [65.18008807383816]
Execution-based benchmarks have been proposed to evaluate functional correctness of model-generated code on simple programming problems.
static analysis tools such as linters, which can detect errors without running the program, haven't been well explored for evaluating code generation models.
We propose a static evaluation framework to quantify static errors in Python code completions, by leveraging Abstract Syntax Trees.
arXiv Detail & Related papers (2023-06-05T19:23:34Z) - Code Execution with Pre-trained Language Models [88.04688617516827]
Most pre-trained models for code intelligence ignore the execution trace and only rely on source code and syntactic structures.
We develop a mutation-based data augmentation technique to create a large-scale and realistic Python dataset and task for code execution.
We then present CodeExecutor, a Transformer model that leverages code execution pre-training and curriculum learning to enhance its semantic comprehension.
arXiv Detail & Related papers (2023-05-08T10:00:05Z) - Enriching Source Code with Contextual Data for Code Completion Models:
An Empirical Study [4.438873396405334]
We aim to answer whether making code easier to understand through using contextual data improves the performance of pre-trained code language models for the task of code completion.
For comments, we find that the models perform better in the presence of multi-line comments.
arXiv Detail & Related papers (2023-04-24T17:09:14Z) - Teaching Large Language Models to Self-Debug [62.424077000154945]
Large language models (LLMs) have achieved impressive performance on code generation.
We propose Self- Debugging, which teaches a large language model to debug its predicted program via few-shot demonstrations.
arXiv Detail & Related papers (2023-04-11T10:43:43Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
In this paper, we frame the problem of providing feedback as few-shot classification.
A meta-learner adapts to give feedback to student code on a new programming question from just a few examples by instructors.
Our approach was successfully deployed to deliver feedback to 16,000 student exam-solutions in a programming course offered by a tier 1 university.
arXiv Detail & Related papers (2021-07-23T22:41:28Z) - GraphCodeBERT: Pre-training Code Representations with Data Flow [97.00641522327699]
We present GraphCodeBERT, a pre-trained model for programming language that considers the inherent structure of code.
We use data flow in the pre-training stage, which is a semantic-level structure of code that encodes the relation of "where-the-value-comes-from" between variables.
We evaluate our model on four tasks, including code search, clone detection, code translation, and code refinement.
arXiv Detail & Related papers (2020-09-17T15:25:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.