NeoBERT: A Next-Generation BERT
- URL: http://arxiv.org/abs/2502.19587v1
- Date: Wed, 26 Feb 2025 22:00:22 GMT
- Title: NeoBERT: A Next-Generation BERT
- Authors: Lola Le Breton, Quentin Fournier, Mariam El Mezouar, Sarath Chandar,
- Abstract summary: NeoBERT is a next-generation encoder that redefines the capabilities of bidirectional models.<n>We release all code, data, checkpoints, and training scripts to accelerate research and real-world adoption.
- Score: 9.673882259199278
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent innovations in architecture, pre-training, and fine-tuning have led to the remarkable in-context learning and reasoning abilities of large auto-regressive language models such as LLaMA and DeepSeek. In contrast, encoders like BERT and RoBERTa have not seen the same level of progress despite being foundational for many downstream NLP applications. To bridge this gap, we introduce NeoBERT, a next-generation encoder that redefines the capabilities of bidirectional models by integrating state-of-the-art advancements in architecture, modern data, and optimized pre-training methodologies. NeoBERT is designed for seamless adoption: it serves as a plug-and-play replacement for existing base models, relies on an optimal depth-to-width ratio, and leverages an extended context length of 4,096 tokens. Despite its compact 250M parameter footprint, it achieves state-of-the-art results on the massive MTEB benchmark, outperforming BERT large, RoBERTa large, NomicBERT, and ModernBERT under identical fine-tuning conditions. In addition, we rigorously evaluate the impact of each modification on GLUE and design a uniform fine-tuning and evaluation framework for MTEB. We release all code, data, checkpoints, and training scripts to accelerate research and real-world adoption.
Related papers
- Learning Transformer-based World Models with Contrastive Predictive Coding [58.0159270859475]
We show that the next state prediction objective is insufficient to fully exploit the representation capabilities of Transformers.
We propose to extend world model predictions to longer time horizons by introducing TWISTER, a world model using action-conditioned Contrastive Predictive Coding.
TWISTER achieves a human-normalized mean score of 162% on the Atari 100k benchmark, setting a new record among state-of-the-art methods that do not employ look-ahead search.
arXiv Detail & Related papers (2025-03-06T13:18:37Z) - MosaicBERT: A Bidirectional Encoder Optimized for Fast Pretraining [10.421048804389343]
We introduce MosaicBERT, a BERT-style encoder architecture and training recipe that is empirically optimized for fast pretraining.
When pretrained from scratch on the C4 dataset, this base model achieves a downstream average GLUE (dev) score of 79.6 in 1.13 hours on 8 A100 80 GB GPUs at a cost of roughly $20.
This empirical speed up in pretraining enables researchers and engineers to pretrain custom BERT-style models at low cost instead of finetune on existing generic models.
arXiv Detail & Related papers (2023-12-29T06:05:19Z) - oBERTa: Improving Sparse Transfer Learning via improved initialization,
distillation, and pruning regimes [82.99830498937729]
oBERTa is an easy-to-use set of language models for Natural Language Processing.
It allows NLP practitioners to obtain between 3.8 and 24.3 times faster models without expertise in model compression.
We explore the use of oBERTa on seven representative NLP tasks.
arXiv Detail & Related papers (2023-03-30T01:37:19Z) - Deploying a BERT-based Query-Title Relevance Classifier in a Production
System: a View from the Trenches [3.1219977244201056]
Bidirectional Representations from Transformers (BERT) model has been radically improving the performance of many Natural Language Processing (NLP) tasks.
It is challenging to scale BERT for low-latency and high- throughput industrial use cases due to its enormous size.
We successfully optimize a Query-Title Relevance (QTR) classifier for deployment via a compact model, which we name BERT Bidirectional Long Short-Term Memory (BertBiLSTM)
BertBiLSTM exceeds the off-the-shelf BERT model's performance in terms of accuracy and efficiency for the aforementioned real-world production task
arXiv Detail & Related papers (2021-08-23T14:28:23Z) - AutoBERT-Zero: Evolving BERT Backbone from Scratch [94.89102524181986]
We propose an Operation-Priority Neural Architecture Search (OP-NAS) algorithm to automatically search for promising hybrid backbone architectures.
We optimize both the search algorithm and evaluation of candidate models to boost the efficiency of our proposed OP-NAS.
Experiments show that the searched architecture (named AutoBERT-Zero) significantly outperforms BERT and its variants of different model capacities in various downstream tasks.
arXiv Detail & Related papers (2021-07-15T16:46:01Z) - Transformers: "The End of History" for NLP? [17.36054090232896]
We shed light on some important theoretical limitations of pre-trained BERT-style models.
We show that addressing these limitations can yield sizable improvements over vanilla RoBERTa and XLNet.
We offer a more general discussion on desiderata for future additions to the Transformer architecture.
arXiv Detail & Related papers (2021-04-09T08:29:42Z) - BinaryBERT: Pushing the Limit of BERT Quantization [74.65543496761553]
We propose BinaryBERT, which pushes BERT quantization to the limit with weight binarization.
We find that a binary BERT is hard to be trained directly than a ternary counterpart due to its complex and irregular loss landscapes.
Empirical results show that BinaryBERT has negligible performance drop compared to the full-precision BERT-base.
arXiv Detail & Related papers (2020-12-31T16:34:54Z) - ConvBERT: Improving BERT with Span-based Dynamic Convolution [144.25748617961082]
BERT heavily relies on the global self-attention block and thus suffers large memory footprint and computation cost.
We propose a novel span-based dynamic convolution to replace these self-attention heads to directly model local dependencies.
The novel convolution heads, together with the rest self-attention heads, form a new mixed attention block that is more efficient at both global and local context learning.
arXiv Detail & Related papers (2020-08-06T07:43:19Z) - DeBERTa: Decoding-enhanced BERT with Disentangled Attention [119.77305080520718]
We propose a new model architecture DeBERTa that improves the BERT and RoBERTa models using two novel techniques.
We show that these techniques significantly improve the efficiency of model pre-training and the performance of both natural language understanding (NLU) and natural langauge generation (NLG) downstream tasks.
arXiv Detail & Related papers (2020-06-05T19:54:34Z) - DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference [69.93692147242284]
Large-scale pre-trained language models such as BERT have brought significant improvements to NLP applications.
We propose a simple but effective method, DeeBERT, to accelerate BERT inference.
Experiments show that DeeBERT is able to save up to 40% inference time with minimal degradation in model quality.
arXiv Detail & Related papers (2020-04-27T17:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.