A Method for Evaluating the Interpretability of Machine Learning Models in Predicting Bond Default Risk Based on LIME and SHAP
- URL: http://arxiv.org/abs/2502.19615v1
- Date: Wed, 26 Feb 2025 23:05:34 GMT
- Title: A Method for Evaluating the Interpretability of Machine Learning Models in Predicting Bond Default Risk Based on LIME and SHAP
- Authors: Yan Zhang, Lin Chen, Yixiang Tian,
- Abstract summary: This paper uses bond market default prediction as a case study, applying commonly used machine learning algorithms within AI models.<n>The results of this analysis are consistent with the intuitive understanding and logical expectations regarding the interpretability of these models.
- Score: 7.7133862848321835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpretability analysis methods for artificial intelligence models, such as LIME and SHAP, are widely used, though they primarily serve as post-model for analyzing model outputs. While it is commonly believed that the transparency and interpretability of AI models diminish as their complexity increases, currently there is no standardized method for assessing the inherent interpretability of the models themselves. This paper uses bond market default prediction as a case study, applying commonly used machine learning algorithms within AI models. First, the classification performance of these algorithms in default prediction is evaluated. Then, leveraging LIME and SHAP to assess the contribution of sample features to prediction outcomes, the paper proposes a novel method for evaluating the interpretability of the models themselves. The results of this analysis are consistent with the intuitive understanding and logical expectations regarding the interpretability of these models.
Related papers
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
We propose a Supervised Score-based Model (SSM) which can be viewed as a gradient boosting algorithm combining score matching.<n>We provide a theoretical analysis of learning and sampling for SSM to balance inference time and prediction accuracy.<n>Our model outperforms existing models in both accuracy and inference time.
arXiv Detail & Related papers (2024-11-02T07:06:53Z) - SynthTree: Co-supervised Local Model Synthesis for Explainable Prediction [15.832975722301011]
We propose a novel method to enhance explainability with minimal accuracy loss.
We have developed novel methods for estimating nodes by leveraging AI techniques.
Our findings highlight the critical role that statistical methodologies can play in advancing explainable AI.
arXiv Detail & Related papers (2024-06-16T14:43:01Z) - Generalizing Backpropagation for Gradient-Based Interpretability [103.2998254573497]
We show that the gradient of a model is a special case of a more general formulation using semirings.
This observation allows us to generalize the backpropagation algorithm to efficiently compute other interpretable statistics.
arXiv Detail & Related papers (2023-07-06T15:19:53Z) - Characterizing the contribution of dependent features in XAI methods [6.990173577370281]
We propose a proxy that modifies the outcome of any XAI feature ranking method allowing to account for the dependency among the predictors.
The proposed approach has the advantage of being model-agnostic as well as simple to calculate the impact of each predictor in the model in presence of collinearity.
arXiv Detail & Related papers (2023-04-04T11:25:57Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
We show how spurious correlations affect the performance of popular self-supervised learning (SSL) and auto-encoder based models (AE)
We develop a novel evaluation scheme with the linear head trained on out-of-distribution (OOD) data, to isolate the performance of the pre-trained models from a potential bias of the linear head used for evaluation.
arXiv Detail & Related papers (2022-06-17T16:18:28Z) - GAM(e) changer or not? An evaluation of interpretable machine learning
models based on additive model constraints [5.783415024516947]
This paper investigates a series of intrinsically interpretable machine learning models.
We evaluate the prediction qualities of five GAMs as compared to six traditional ML models.
arXiv Detail & Related papers (2022-04-19T20:37:31Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
We conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews.
We observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control.
arXiv Detail & Related papers (2021-12-17T18:29:56Z) - Tree-based local explanations of machine learning model predictions,
AraucanaXAI [2.9660372210786563]
A tradeoff between performance and intelligibility is often to be faced, especially in high-stakes applications like medicine.
We propose a novel methodological approach for generating explanations of the predictions of a generic ML model.
arXiv Detail & Related papers (2021-10-15T17:39:19Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
We present a toolbox for interpretability and reliability, extrapolation of the model architecture.
It provides a notion of the influence of the input data on the prediction at a given test point, an estimation of the uncertainty of the model predictions, and an agnostic score for the model predictions.
Our work opens the road to the systematic use of interpretability and reliability methods in ML applied to physics and, more generally, science.
arXiv Detail & Related papers (2021-08-04T16:32:59Z) - Explainable AI by BAPC -- Before and After correction Parameter
Comparison [0.0]
A local surrogate for an AI-model correcting a simpler 'base' model is introduced representing an analytical method to yield explanations of AI-predictions.
The AI-model approximates the residual error of the linear model and the explanations are formulated in terms of the change of the interpretable base model's parameters.
arXiv Detail & Related papers (2021-03-12T09:03:51Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
Human-readability is an important and desirable standard for machine-learned model interpretability.
We propose to train interpretable models using conventional methods, and then distill them into concise, human-readable code.
We describe a piecewise-linear curve-fitting algorithm that produces high-quality results efficiently and reliably across a broad range of use cases.
arXiv Detail & Related papers (2021-01-21T01:46:36Z) - PermuteAttack: Counterfactual Explanation of Machine Learning Credit
Scorecards [0.0]
This paper is a note on new directions and methodologies for validation and explanation of Machine Learning (ML) models employed for retail credit scoring in finance.
Our proposed framework draws motivation from the field of Artificial Intelligence (AI) security and adversarial ML.
arXiv Detail & Related papers (2020-08-24T00:05:13Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
It is necessary to expose to the process engineer, not solely the model predictions, but also their interpretability.
Model-agnostic local interpretability solutions based on LIME have recently emerged to improve the original method.
We present in this paper a novel approach, VAE-LIME, for local interpretability of data-driven models forecasting the temperature of the hot metal produced by a blast furnace.
arXiv Detail & Related papers (2020-07-15T07:07:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.