Prompt-driven Transferable Adversarial Attack on Person Re-Identification with Attribute-aware Textual Inversion
- URL: http://arxiv.org/abs/2502.19697v2
- Date: Tue, 04 Mar 2025 02:24:30 GMT
- Title: Prompt-driven Transferable Adversarial Attack on Person Re-Identification with Attribute-aware Textual Inversion
- Authors: Yuan Bian, Min Liu, Yunqi Yi, Xueping Wang, Yaonan Wang,
- Abstract summary: We introduce the Attribute-aware Prompt Attack (AP-Attack) to disrupt fine-grained semantic features of pedestrian images.<n>AP-Attack achieves state-of-the-art transferability, significantly outperforming previous methods by 22.9% on mean Drop Rate.
- Score: 17.18411620606476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Person re-identification (re-id) models are vital in security surveillance systems, requiring transferable adversarial attacks to explore the vulnerabilities of them. Recently, vision-language models (VLM) based attacks have shown superior transferability by attacking generalized image and textual features of VLM, but they lack comprehensive feature disruption due to the overemphasis on discriminative semantics in integral representation. In this paper, we introduce the Attribute-aware Prompt Attack (AP-Attack), a novel method that leverages VLM's image-text alignment capability to explicitly disrupt fine-grained semantic features of pedestrian images by destroying attribute-specific textual embeddings. To obtain personalized textual descriptions for individual attributes, textual inversion networks are designed to map pedestrian images to pseudo tokens that represent semantic embeddings, trained in the contrastive learning manner with images and a predefined prompt template that explicitly describes the pedestrian attributes. Inverted benign and adversarial fine-grained textual semantics facilitate attacker in effectively conducting thorough disruptions, enhancing the transferability of adversarial examples. Extensive experiments show that AP-Attack achieves state-of-the-art transferability, significantly outperforming previous methods by 22.9% on mean Drop Rate in cross-model&dataset attack scenarios.
Related papers
- Patch is Enough: Naturalistic Adversarial Patch against Vision-Language Pre-training Models [32.23201683108716]
We propose a novel strategy that exclusively employs image patches for attacks, thus preserving the integrity of the original text.
Our method leverages prior knowledge from diffusion models to enhance the authenticity and naturalness of the perturbations.
Comprehensive experiments conducted in a white-box setting for image-to-text scenarios reveal that our proposed method significantly outperforms existing techniques, achieving a 100% attack success rate.
arXiv Detail & Related papers (2024-10-07T10:06:01Z) - Enhancing Cross-Prompt Transferability in Vision-Language Models through Contextual Injection of Target Tokens [28.356269620160937]
We propose a Contextual-Injection Attack (CIA) that employs gradient-based perturbation to inject target tokens into both visual and textual contexts.
CIA enhances the cross-prompt transferability of adversarial images.
arXiv Detail & Related papers (2024-06-19T07:32:55Z) - MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - Pre-trained Text-to-Image Diffusion Models Are Versatile Representation Learners for Control [73.6361029556484]
Embodied AI agents require a fine-grained understanding of the physical world mediated through visual and language inputs.
We consider pre-trained text-to-image diffusion models, which are explicitly optimized to generate images from text prompts.
We show that Stable Control Representations enable learning policies that exhibit state-of-the-art performance on OVMM, a difficult open-vocabulary navigation benchmark.
arXiv Detail & Related papers (2024-05-09T15:39:54Z) - SA-Attack: Improving Adversarial Transferability of Vision-Language
Pre-training Models via Self-Augmentation [56.622250514119294]
In contrast to white-box adversarial attacks, transfer attacks are more reflective of real-world scenarios.
We propose a self-augment-based transfer attack method, termed SA-Attack.
arXiv Detail & Related papers (2023-12-08T09:08:50Z) - OT-Attack: Enhancing Adversarial Transferability of Vision-Language
Models via Optimal Transport Optimization [65.57380193070574]
Vision-language pre-training models are vulnerable to multi-modal adversarial examples.
Recent works have indicated that leveraging data augmentation and image-text modal interactions can enhance the transferability of adversarial examples.
We propose an Optimal Transport-based Adversarial Attack, dubbed OT-Attack.
arXiv Detail & Related papers (2023-12-07T16:16:50Z) - Instruct2Attack: Language-Guided Semantic Adversarial Attacks [76.83548867066561]
Instruct2Attack (I2A) is a language-guided semantic attack that generates meaningful perturbations according to free-form language instructions.
We make use of state-of-the-art latent diffusion models, where we adversarially guide the reverse diffusion process to search for an adversarial latent code conditioned on the input image and text instruction.
We show that I2A can successfully break state-of-the-art deep neural networks even under strong adversarial defenses.
arXiv Detail & Related papers (2023-11-27T05:35:49Z) - Counterfactual Image Generation for adversarially robust and
interpretable Classifiers [1.3859669037499769]
We propose a unified framework leveraging image-to-image translation Generative Adrial Networks (GANs) to produce counterfactual samples.
This is achieved by combining the classifier and discriminator into a single model that attributes real images to their respective classes and flags generated images as "fake"
We show how the model exhibits improved robustness to adversarial attacks, and we show how the discriminator's "fakeness" value serves as an uncertainty measure of the predictions.
arXiv Detail & Related papers (2023-10-01T18:50:29Z) - Adv-Attribute: Inconspicuous and Transferable Adversarial Attack on Face
Recognition [111.1952945740271]
Adversarial Attributes (Adv-Attribute) is designed to generate inconspicuous and transferable attacks on face recognition.
Experiments on the FFHQ and CelebA-HQ datasets show that the proposed Adv-Attribute method achieves the state-of-the-art attacking success rates.
arXiv Detail & Related papers (2022-10-13T09:56:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.