Few-Shot Multilingual Open-Domain QA from 5 Examples
- URL: http://arxiv.org/abs/2502.19722v1
- Date: Thu, 27 Feb 2025 03:24:57 GMT
- Title: Few-Shot Multilingual Open-Domain QA from 5 Examples
- Authors: Fan Jiang, Tom Drummond, Trevor Cohn,
- Abstract summary: We introduce a emphfew-shot learning approach to synthesise large-scale multilingual data from large language models (LLMs)<n>Our method begins with large-scale self-supervised pre-training using WikiData, followed by training on high-quality synthetic multilingual data generated by prompting LLMs with few-shot supervision.<n>The final model, textscFsModQA, significantly outperforms existing few-shot and supervised baselines in MLODQA and cross-lingual and monolingual retrieval.
- Score: 44.04243892727856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent approaches to multilingual open-domain question answering (MLODQA) have achieved promising results given abundant language-specific training data. However, the considerable annotation cost limits the application of these methods for underrepresented languages. We introduce a \emph{few-shot learning} approach to synthesise large-scale multilingual data from large language models (LLMs). Our method begins with large-scale self-supervised pre-training using WikiData, followed by training on high-quality synthetic multilingual data generated by prompting LLMs with few-shot supervision. The final model, \textsc{FsModQA}, significantly outperforms existing few-shot and supervised baselines in MLODQA and cross-lingual and monolingual retrieval. We further show our method can be extended for effective zero-shot adaptation to new languages through a \emph{cross-lingual prompting} strategy with only English-supervised data, making it a general and applicable solution for MLODQA tasks without costly large-scale annotation.
Related papers
- Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
Cross-lingual summarization ( CLS) aims to generate a summary for the source text in a different target language.
Currently, instruction-tuned large language models (LLMs) excel at various English tasks.
Recent studies have shown that LLMs' performance on CLS tasks remains unsatisfactory even with few-shot settings.
arXiv Detail & Related papers (2024-10-26T00:39:44Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora.
But can these models relate corresponding concepts across languages, effectively being crosslingual?
This study evaluates six state-of-the-art LLMs on inherently crosslingual tasks.
arXiv Detail & Related papers (2024-06-23T15:15:17Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
We propose XLM-P, which contextually retrieves prompts as flexible guidance for encoding instances conditionally.
Our XLM-P enables (1) lightweight modeling of language-invariant and language-specific knowledge across languages, and (2) easy integration with other multilingual pre-training methods.
arXiv Detail & Related papers (2023-06-13T08:08:08Z) - Cross-lingual QA: A Key to Unlocking In-context Cross-lingual Performance [2.371686365695081]
Cross-lingual QA is a cross-lingual prompting method that translates only the question and answer parts, thus reducing translation costs.
Experiments on four typologically diverse multilingual benchmarks show that Cross-lingual QA effectively stimulates models to elicit their cross-lingual knowledge.
We show that prompting open-source MLLMs with cross-lingual in-context examples enhances performance as the model scale increases.
arXiv Detail & Related papers (2023-05-24T15:14:49Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
Cross-lingual transfer of language models trained on high-resource languages like English has been widely studied for many NLP tasks.
We introduce XSGD for cross-lingual alignment pretraining, a parallel and large-scale multilingual conversation dataset.
To facilitate aligned cross-lingual representations, we develop an efficient prompt-tuning-based method for learning alignment prompts.
arXiv Detail & Related papers (2023-04-03T18:46:01Z) - QAmeleon: Multilingual QA with Only 5 Examples [71.80611036543633]
We show how to leverage pre-trained language models under a few-shot learning setting.
Our approach, QAmeleon, uses a PLM to automatically generate multilingual data upon which QA models are trained.
Prompt tuning the PLM for data synthesis with only five examples per language delivers accuracy superior to translation-based baselines.
arXiv Detail & Related papers (2022-11-15T16:14:39Z) - Multilingual Transfer Learning for QA Using Translation as Data
Augmentation [13.434957024596898]
We explore strategies that improve cross-lingual transfer by bringing the multilingual embeddings closer in the semantic space.
We propose two novel strategies, language adversarial training and language arbitration framework, which significantly improve the (zero-resource) cross-lingual transfer performance.
Empirically, we show that the proposed models outperform the previous zero-shot baseline on the recently introduced multilingual MLQA and TyDiQA datasets.
arXiv Detail & Related papers (2020-12-10T20:29:34Z) - Synthetic Data Augmentation for Zero-Shot Cross-Lingual Question
Answering [8.558954185502012]
We propose a method to improve the Cross-lingual Question Answering performance without requiring additional annotated data.
We report a new state-of-the-art on four multilingual datasets: MLQA, XQuAD, SQuAD-it and PIAF (fr)
arXiv Detail & Related papers (2020-10-23T20:09:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.