Finding Local Diffusion Schrödinger Bridge using Kolmogorov-Arnold Network
- URL: http://arxiv.org/abs/2502.19754v2
- Date: Tue, 04 Mar 2025 03:11:53 GMT
- Title: Finding Local Diffusion Schrödinger Bridge using Kolmogorov-Arnold Network
- Authors: Xingyu Qiu, Mengying Yang, Xinghua Ma, Fanding Li, Dong Liang, Gongning Luo, Wei Wang, Kuanquan Wang, Shuo Li,
- Abstract summary: This paper proposes for the first time to find local Diffusion Schr"odinger Bridges (LDSB) in the diffusion path subspace.<n>The experiment shows that our LDSB significantly improves the quality and efficiency of image generation using the same pre-trained denoising network.
- Score: 7.651628106346734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In image generation, Schr\"odinger Bridge (SB)-based methods theoretically enhance the efficiency and quality compared to the diffusion models by finding the least costly path between two distributions. However, they are computationally expensive and time-consuming when applied to complex image data. The reason is that they focus on fitting globally optimal paths in high-dimensional spaces, directly generating images as next step on the path using complex networks through self-supervised training, which typically results in a gap with the global optimum. Meanwhile, most diffusion models are in the same path subspace generated by weights $f_A(t)$ and $f_B(t)$, as they follow the paradigm ($x_t = f_A(t)x_{Img} + f_B(t)\epsilon$). To address the limitations of SB-based methods, this paper proposes for the first time to find local Diffusion Schr\"odinger Bridges (LDSB) in the diffusion path subspace, which strengthens the connection between the SB problem and diffusion models. Specifically, our method optimizes the diffusion paths using Kolmogorov-Arnold Network (KAN), which has the advantage of resistance to forgetting and continuous output. The experiment shows that our LDSB significantly improves the quality and efficiency of image generation using the same pre-trained denoising network and the KAN for optimising is only less than 0.1MB. The FID metric is reduced by more than 15\%, especially with a reduction of 48.50\% when NFE of DDIM is $5$ for the CelebA dataset. Code is available at https://github.com/PerceptionComputingLab/LDSB.
Related papers
- Single-Step Bidirectional Unpaired Image Translation Using Implicit Bridge Consistency Distillation [55.45188329646137]
Implicit Bridge Consistency Distillation (IBCD) enables single-step bidirectional unpaired translation without using adversarial loss.
IBCD achieves state-of-the-art performance on benchmark datasets in a single generation step.
arXiv Detail & Related papers (2025-03-19T09:48:04Z) - Bidirectional Diffusion Bridge Models [14.789137197695654]
Diffusion bridges have shown potential in paired image-to-image (I2I) translation tasks.
Existing methods are limited by their unidirectional nature, requiring separate models for forward and reverse translations.
We introduce the Bidirectional Diffusion Bridge Model (BDBM), a scalable approach that facilitates bidirectional translation between two coupled distributions.
arXiv Detail & Related papers (2025-02-12T04:43:02Z) - Latent Schrodinger Bridge: Prompting Latent Diffusion for Fast Unpaired Image-to-Image Translation [58.19676004192321]
Diffusion models (DMs), which enable both image generation from noise and inversion from data, have inspired powerful unpaired image-to-image (I2I) translation algorithms.
We tackle this problem with Schrodinger Bridges (SBs), which are differential equations (SDEs) between distributions with minimal transport cost.
Inspired by this observation, we propose Latent Schrodinger Bridges (LSBs) that approximate the SB ODE via pre-trained Stable Diffusion.
We demonstrate that our algorithm successfully conduct competitive I2I translation in unsupervised setting with only a fraction of cost required by previous DM-
arXiv Detail & Related papers (2024-11-22T11:24:14Z) - Fast Ensembling with Diffusion Schrödinger Bridge [17.334437293164566]
Deep Ensemble (DE) approach is a straightforward technique used to enhance the performance of deep neural networks by training them from different initial points, converging towards various local optima.
We propose a novel approach called Diffusion Bridge Network (DBN) to address this challenge.
By substituting the heavy ensembles with this lightweight neural network DBN, we achieved inference with reduced computational cost while maintaining accuracy and uncertainty scores on benchmark datasets such as CIFAR-10, CIFAR-100, and TinyImageNet.
arXiv Detail & Related papers (2024-04-24T11:35:02Z) - One-step Diffusion with Distribution Matching Distillation [54.723565605974294]
We introduce Distribution Matching Distillation (DMD), a procedure to transform a diffusion model into a one-step image generator.
We enforce the one-step image generator match the diffusion model at distribution level, by minimizing an approximate KL divergence.
Our method outperforms all published few-step diffusion approaches, reaching 2.62 FID on ImageNet 64x64 and 11.49 FID on zero-shot COCO-30k.
arXiv Detail & Related papers (2023-11-30T18:59:20Z) - ACT-Diffusion: Efficient Adversarial Consistency Training for One-step Diffusion Models [59.90959789767886]
We show that optimizing consistency training loss minimizes the Wasserstein distance between target and generated distributions.
By incorporating a discriminator into the consistency training framework, our method achieves improved FID scores on CIFAR10 and ImageNet 64$times$64 and LSUN Cat 256$times$256 datasets.
arXiv Detail & Related papers (2023-11-23T16:49:06Z) - Unpaired Image-to-Image Translation via Neural Schr\"odinger Bridge [70.79973551604539]
We propose Unpaired Neural Schr"odinger Bridge (UNSB), which expresses the SB problem as a sequence of adversarial learning problems.
UNSB is scalable and successfully solves various unpaired I2I translation tasks.
arXiv Detail & Related papers (2023-05-24T12:05:24Z) - I$^2$SB: Image-to-Image Schr\"odinger Bridge [87.43524087956457]
Image-to-Image Schr"odinger Bridge (I$2$SB) is a new class of conditional diffusion models.
I$2$SB directly learns the nonlinear diffusion processes between two given distributions.
We show that I$2$SB surpasses standard conditional diffusion models with more interpretable generative processes.
arXiv Detail & Related papers (2023-02-12T08:35:39Z) - SDM: Spatial Diffusion Model for Large Hole Image Inpainting [106.90795513361498]
We present a novel spatial diffusion model (SDM) that uses a few iterations to gradually deliver informative pixels to the entire image.
Also, thanks to the proposed decoupled probabilistic modeling and spatial diffusion scheme, our method achieves high-quality large-hole completion.
arXiv Detail & Related papers (2022-12-06T13:30:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.