Learning Hamiltonian Density Using DeepONet
- URL: http://arxiv.org/abs/2502.19994v1
- Date: Thu, 27 Feb 2025 11:21:21 GMT
- Title: Learning Hamiltonian Density Using DeepONet
- Authors: Baige Xu, Yusuke Tanaka, Takashi Matsubara, Takaharu Yaguchi,
- Abstract summary: We propose an operator learning approach for modeling wave equations.<n>In particular, we present a method to compute the variational derivatives that are needed to formulate the equations.
- Score: 14.60505438640729
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, deep learning for modeling physical phenomena which can be described by partial differential equations (PDEs) have received significant attention. For example, for learning Hamiltonian mechanics, methods based on deep neural networks such as Hamiltonian Neural Networks (HNNs) and their variants have achieved progress. However, existing methods typically depend on the discretization of data, and the determination of required differential operators is often necessary. Instead, in this work, we propose an operator learning approach for modeling wave equations. In particular, we present a method to compute the variational derivatives that are needed to formulate the equations using the automatic differentiation algorithm. The experiments demonstrated that the proposed method is able to learn the operator that defines the Hamiltonian density of waves from data with unspecific discretization without determination of the differential operators.
Related papers
- Linearization Turns Neural Operators into Function-Valued Gaussian Processes [23.85470417458593]
We introduce LUNO, a novel framework for approximate Bayesian uncertainty quantification in trained neural operators.<n>Our approach leverages model linearization to push (Gaussian) weight-space uncertainty forward to the neural operator's predictions.<n>We show that this can be interpreted as a probabilistic version of the concept of currying from functional programming, yielding a function-valued (Gaussian) random process belief.
arXiv Detail & Related papers (2024-06-07T16:43:54Z) - Operator-learning-inspired Modeling of Neural Ordinary Differential
Equations [38.17903151426809]
We present a neural operator-based method to define the time-derivative term.
In our experiments with general downstream tasks, our method significantly outperforms existing methods.
arXiv Detail & Related papers (2023-12-16T00:29:15Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - A PINN Approach to Symbolic Differential Operator Discovery with Sparse
Data [0.0]
In this work we perform symbolic discovery of differential operators in a situation where there is sparse experimental data.
We modify the PINN approach by adding a neural network that learns a representation of unknown hidden terms in the differential equation.
The algorithm yields both a surrogate solution to the differential equation and a black-box representation of the hidden terms.
arXiv Detail & Related papers (2022-12-09T02:09:37Z) - Neural ODEs with Irregular and Noisy Data [8.349349605334316]
We discuss a methodology to learn differential equation(s) using noisy and irregular sampled measurements.
In our methodology, the main innovation can be seen in the integration of deep neural networks with the neural ordinary differential equations (ODEs) approach.
The proposed framework to learn a model describing the vector field is highly effective under noisy measurements.
arXiv Detail & Related papers (2022-05-19T11:24:41Z) - Learning Dynamics from Noisy Measurements using Deep Learning with a
Runge-Kutta Constraint [9.36739413306697]
We discuss a methodology to learn differential equation(s) using noisy and sparsely sampled measurements.
In our methodology, the main innovation can be seen in of integration of deep neural networks with a classical numerical integration method.
arXiv Detail & Related papers (2021-09-23T15:43:45Z) - Feature Engineering with Regularity Structures [4.082216579462797]
We investigate the use of models from the theory of regularity structures as features in machine learning tasks.
We provide a flexible definition of a model feature vector associated to a space-time signal, along with two algorithms which illustrate ways in which these features can be combined with linear regression.
We apply these algorithms in several numerical experiments designed to learn solutions to PDEs with a given forcing and boundary data.
arXiv Detail & Related papers (2021-08-12T17:53:47Z) - Incorporating NODE with Pre-trained Neural Differential Operator for
Learning Dynamics [73.77459272878025]
We propose to enhance the supervised signal in learning dynamics by pre-training a neural differential operator (NDO)
NDO is pre-trained on a class of symbolic functions, and it learns the mapping between the trajectory samples of these functions to their derivatives.
We provide theoretical guarantee on that the output of NDO can well approximate the ground truth derivatives by proper tuning the complexity of the library.
arXiv Detail & Related papers (2021-06-08T08:04:47Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
We formulate a new neural operator by parameterizing the integral kernel directly in Fourier space.
We perform experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation.
It is up to three orders of magnitude faster compared to traditional PDE solvers.
arXiv Detail & Related papers (2020-10-18T00:34:21Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
We describe the algorithm for the mathematical equations discovery from the given observations data.
The algorithm combines genetic programming with the sparse regression.
It could be used for governing analytical equation discovery as well as for partial differential equations (PDE) discovery.
arXiv Detail & Related papers (2020-04-03T17:21:57Z) - Interpolation Technique to Speed Up Gradients Propagation in Neural ODEs [71.26657499537366]
We propose a simple literature-based method for the efficient approximation of gradients in neural ODE models.
We compare it with the reverse dynamic method to train neural ODEs on classification, density estimation, and inference approximation tasks.
arXiv Detail & Related papers (2020-03-11T13:15:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.