Sanity Checking Causal Representation Learning on a Simple Real-World System
- URL: http://arxiv.org/abs/2502.20099v2
- Date: Mon, 28 Apr 2025 10:30:46 GMT
- Title: Sanity Checking Causal Representation Learning on a Simple Real-World System
- Authors: Juan L. Gamella, Simon Bing, Jakob Runge,
- Abstract summary: We evaluate methods for causal representation learning on a simple, real-world system where these methods are expected to work.<n>We select methods representative of different approaches to CRL and find that they all fail to recover the underlying causal factors.<n>Our efforts highlight the contrast between the theoretical promise of the state of the art and the challenges in its application.
- Score: 11.429106388558925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We evaluate methods for causal representation learning (CRL) on a simple, real-world system where these methods are expected to work. The system consists of a controlled optical experiment specifically built for this purpose, which satisfies the core assumptions of CRL and where the underlying causal factors (the inputs to the experiment) are known, providing a ground truth. We select methods representative of different approaches to CRL and find that they all fail to recover the underlying causal factors. To understand the failure modes of the evaluated algorithms, we perform an ablation on the data by substituting the real data-generating process with a simpler synthetic equivalent. The results reveal a reproducibility problem, as most methods already fail on this synthetic ablation despite its simple data-generating process. Additionally, we observe that common assumptions on the mixing function are crucial for the performance of some of the methods but do not hold in the real data. Our efforts highlight the contrast between the theoretical promise of the state of the art and the challenges in its application. We hope the benchmark serves as a simple, real-world sanity check to further develop and validate methodology, bridging the gap towards CRL methods that work in practice. We make all code and datasets publicly available at github.com/simonbing/CRLSanityCheck
Related papers
- Decomposing Control Lyapunov Functions for Efficient Reinforcement Learning [10.117626902557927]
Current Reinforcement Learning (RL) methods require large amounts of data to learn a specific task, leading to unreasonable costs when deploying the agent to collect data in real-world applications.
In this paper, we build from existing work that reshapes the reward function in RL by introducing a Control Lyapunov Function (CLF) to reduce the sample complexity.
We show that our method finds a policy to successfully land a quadcopter in less than half the amount of real-world data required by the state-of-the-art Soft-Actor Critic algorithm.
arXiv Detail & Related papers (2024-03-18T19:51:17Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
We present a Discrepancy Aware Framework (DAF), which demonstrates robust performance consistently with simple and cheap strategies.
Our method leverages an appearance-agnostic cue to guide the decoder in identifying defects, thereby alleviating its reliance on synthetic appearance.
Under the simple synthesis strategies, it outperforms existing methods by a large margin. Furthermore, it also achieves the state-of-the-art localization performance.
arXiv Detail & Related papers (2023-10-11T15:21:40Z) - Value-Consistent Representation Learning for Data-Efficient
Reinforcement Learning [105.70602423944148]
We propose a novel method, called value-consistent representation learning (VCR), to learn representations that are directly related to decision-making.
Instead of aligning this imagined state with a real state returned by the environment, VCR applies a $Q$-value head on both states and obtains two distributions of action values.
It has been demonstrated that our methods achieve new state-of-the-art performance for search-free RL algorithms.
arXiv Detail & Related papers (2022-06-25T03:02:25Z) - Evaluating Causal Inference Methods [0.4588028371034407]
We introduce a deep generative model-based framework, Credence, to validate causal inference methods.
Our work introduces a deep generative model-based framework, Credence, to validate causal inference methods.
arXiv Detail & Related papers (2022-02-09T00:21:22Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
We propose a causally-aware imputation algorithm (MIRACLE) for missing data.
MIRACLE iteratively refines the imputation of a baseline by simultaneously modeling the missingness generating mechanism.
We conduct extensive experiments on synthetic and a variety of publicly available datasets to show that MIRACLE is able to consistently improve imputation.
arXiv Detail & Related papers (2021-11-04T22:38:18Z) - Robust Predictable Control [149.71263296079388]
We show that our method achieves much tighter compression than prior methods, achieving up to 5x higher reward than a standard information bottleneck.
We also demonstrate that our method learns policies that are more robust and generalize better to new tasks.
arXiv Detail & Related papers (2021-09-07T17:29:34Z) - Ordering-Based Causal Discovery with Reinforcement Learning [31.358145789333825]
We propose a novel RL-based approach for causal discovery, by incorporating RL into the ordering-based paradigm.
We analyze the consistency and computational complexity of the proposed method, and empirically show that a pretrained model can be exploited to accelerate training.
arXiv Detail & Related papers (2021-05-14T03:49:59Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Sample-Efficient Reinforcement Learning via Counterfactual-Based Data
Augmentation [15.451690870640295]
In some scenarios such as healthcare, usually only few records are available for each patient, impeding the application of currentReinforcement learning algorithms.
We propose a data-efficient RL algorithm that exploits structural causal models (SCMs) to model the state dynamics.
We show that counterfactual outcomes are identifiable under mild conditions and that Q- learning on the counterfactual-based augmented data set converges to the optimal value function.
arXiv Detail & Related papers (2020-12-16T17:21:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.