Gradient-Guided Annealing for Domain Generalization
- URL: http://arxiv.org/abs/2502.20162v4
- Date: Mon, 24 Mar 2025 17:49:54 GMT
- Title: Gradient-Guided Annealing for Domain Generalization
- Authors: Aristotelis Ballas, Christos Diou,
- Abstract summary: Gradient-Guided Annealing (GGA) algorithm is proposed to improve domain generalization effectiveness.<n>The efficacy of GGA is evaluated on five widely accepted and challenging image classification domain generalization benchmarks.
- Score: 5.124256074746721
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Domain Generalization (DG) research has gained considerable traction as of late, since the ability to generalize to unseen data distributions is a requirement that eludes even state-of-the-art training algorithms. In this paper we observe that the initial iterations of model training play a key role in domain generalization effectiveness, since the loss landscape may be significantly different across the training and test distributions, contrary to the case of i.i.d. data. Conflicts between gradients of the loss components of each domain lead the optimization procedure to undesirable local minima that do not capture the domain-invariant features of the target classes. We propose alleviating domain conflicts in model optimization, by iteratively annealing the parameters of a model in the early stages of training and searching for points where gradients align between domains. By discovering a set of parameter values where gradients are updated towards the same direction for each data distribution present in the training set, the proposed Gradient-Guided Annealing (GGA) algorithm encourages models to seek out minima that exhibit improved robustness against domain shifts. The efficacy of GGA is evaluated on five widely accepted and challenging image classification domain generalization benchmarks, where its use alone is able to establish highly competitive or even state-of-the-art performance. Moreover, when combined with previously proposed domain-generalization algorithms it is able to consistently improve their effectiveness by significant margins.
Related papers
- PracticalDG: Perturbation Distillation on Vision-Language Models for Hybrid Domain Generalization [24.413415998529754]
We propose a new benchmark Hybrid Domain Generalization (HDG) and a novel metric $H2$-CV, which construct various splits to assess the robustness of algorithms.
Our method outperforms state-of-the-art algorithms on multiple datasets, especially improving the robustness when confronting data scarcity.
arXiv Detail & Related papers (2024-04-13T13:41:13Z) - Label Alignment Regularization for Distribution Shift [63.228879525056904]
Recent work has highlighted the label alignment property (LAP) in supervised learning, where the vector of all labels in the dataset is mostly in the span of the top few singular vectors of the data matrix.
We propose a regularization method for unsupervised domain adaptation that encourages alignment between the predictions in the target domain and its top singular vectors.
We report improved performance over domain adaptation baselines in well-known tasks such as MNIST-USPS domain adaptation and cross-lingual sentiment analysis.
arXiv Detail & Related papers (2022-11-27T22:54:48Z) - Unsupervised Domain Adaptive Fundus Image Segmentation with
Category-level Regularization [25.58501677242639]
This paper presents an unsupervised domain adaptation framework based on category-level regularization.
Experiments on two publicly fundus datasets show that the proposed approach significantly outperforms other state-of-the-art comparison algorithms.
arXiv Detail & Related papers (2022-07-08T04:34:39Z) - On Certifying and Improving Generalization to Unseen Domains [87.00662852876177]
Domain Generalization aims to learn models whose performance remains high on unseen domains encountered at test-time.
It is challenging to evaluate DG algorithms comprehensively using a few benchmark datasets.
We propose a universal certification framework that can efficiently certify the worst-case performance of any DG method.
arXiv Detail & Related papers (2022-06-24T16:29:43Z) - Relation Matters: Foreground-aware Graph-based Relational Reasoning for
Domain Adaptive Object Detection [81.07378219410182]
We propose a new and general framework for DomainD, named Foreground-aware Graph-based Reasoning (FGRR)
FGRR incorporates graph structures into the detection pipeline to explicitly model the intra- and inter-domain foreground object relations.
Empirical results demonstrate that the proposed FGRR exceeds the state-of-the-art on four DomainD benchmarks.
arXiv Detail & Related papers (2022-06-06T05:12:48Z) - Revisiting Deep Subspace Alignment for Unsupervised Domain Adaptation [42.16718847243166]
Unsupervised domain adaptation (UDA) aims to transfer and adapt knowledge from a labeled source domain to an unlabeled target domain.
Traditionally, subspace-based methods form an important class of solutions to this problem.
This paper revisits the use of subspace alignment for UDA and proposes a novel adaptation algorithm that consistently leads to improved generalization.
arXiv Detail & Related papers (2022-01-05T20:16:38Z) - Towards Principled Disentanglement for Domain Generalization [90.9891372499545]
A fundamental challenge for machine learning models is generalizing to out-of-distribution (OOD) data.
We first formalize the OOD generalization problem as constrained optimization, called Disentanglement-constrained Domain Generalization (DDG)
Based on the transformation, we propose a primal-dual algorithm for joint representation disentanglement and domain generalization.
arXiv Detail & Related papers (2021-11-27T07:36:32Z) - Model-Based Domain Generalization [96.84818110323518]
We propose a novel approach for the domain generalization problem called Model-Based Domain Generalization.
Our algorithms beat the current state-of-the-art methods on the very-recently-proposed WILDS benchmark by up to 20 percentage points.
arXiv Detail & Related papers (2021-02-23T00:59:02Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.