Adapting Automatic Speech Recognition for Accented Air Traffic Control Communications
- URL: http://arxiv.org/abs/2502.20311v1
- Date: Thu, 27 Feb 2025 17:35:59 GMT
- Title: Adapting Automatic Speech Recognition for Accented Air Traffic Control Communications
- Authors: Marcus Yu Zhe Wee, Justin Juin Hng Wong, Lynus Lim, Joe Yu Wei Tan, Prannaya Gupta, Dillion Lim, En Hao Tew, Aloysius Keng Siew Han, Yong Zhi Lim,
- Abstract summary: This study presents the development of ASR models fine-tuned specifically for Southeast Asian accents.<n>Our research achieves significant improvements, achieving a Word Error Rate (WER) of 0.0982 or 9.82% on SEA-accented ATC speech.<n>The findings emphasize the need for noise-robust training techniques and region-specific datasets to improve transcription accuracy for non-Western accents in ATC communications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective communication in Air Traffic Control (ATC) is critical to maintaining aviation safety, yet the challenges posed by accented English remain largely unaddressed in Automatic Speech Recognition (ASR) systems. Existing models struggle with transcription accuracy for Southeast Asian-accented (SEA-accented) speech, particularly in noisy ATC environments. This study presents the development of ASR models fine-tuned specifically for Southeast Asian accents using a newly created dataset. Our research achieves significant improvements, achieving a Word Error Rate (WER) of 0.0982 or 9.82% on SEA-accented ATC speech. Additionally, the paper highlights the importance of region-specific datasets and accent-focused training, offering a pathway for deploying ASR systems in resource-constrained military operations. The findings emphasize the need for noise-robust training techniques and region-specific datasets to improve transcription accuracy for non-Western accents in ATC communications.
Related papers
- Joint vs Sequential Speaker-Role Detection and Automatic Speech Recognition for Air-traffic Control [60.35553925189286]
We propose a transformer-based joint ASR-SRD system that solves both tasks jointly while relying on a standard ASR architecture.
We compare this joint system against two cascaded approaches for ASR and SRD on multiple ATC datasets.
arXiv Detail & Related papers (2024-06-19T21:11:01Z) - Accented Speech Recognition With Accent-specific Codebooks [53.288874858671576]
Speech accents pose a significant challenge to state-of-the-art automatic speech recognition (ASR) systems.
Degradation in performance across underrepresented accents is a severe deterrent to the inclusive adoption of ASR.
We propose a novel accent adaptation approach for end-to-end ASR systems using cross-attention with a trainable set of codebooks.
arXiv Detail & Related papers (2023-10-24T16:10:58Z) - Advancing African-Accented Speech Recognition: Epistemic Uncertainty-Driven Data Selection for Generalizable ASR Models [2.4654745083407175]
We propose a new multi-rounds adaptation process that uses uncertainty to automate the annotation process.
This novel method streamlines data annotation and strategically selects data samples contributing most to model uncertainty.
Our results show that our approach leads to a 27% WER relative average improvement while requiring on average 45% less data than established baselines.
arXiv Detail & Related papers (2023-06-03T13:11:37Z) - A Virtual Simulation-Pilot Agent for Training of Air Traffic Controllers [0.797970449705065]
We propose a novel virtual simulation-pilot engine for speeding up air traffic controller (ATCo) training.
The engine receives spoken communications from ATCo trainees, and it performs automatic speech recognition and understanding.
To the best of our knowledge, this is the first work fully based on open-source ATC resources and AI tools.
arXiv Detail & Related papers (2023-04-16T17:45:21Z) - ATCO2 corpus: A Large-Scale Dataset for Research on Automatic Speech
Recognition and Natural Language Understanding of Air Traffic Control
Communications [51.24043482906732]
We introduce the ATCO2 corpus, a dataset that aims at fostering research on the challenging air traffic control (ATC) field.
The ATCO2 corpus is split into three subsets.
We expect the ATCO2 corpus will foster research on robust ASR and NLU.
arXiv Detail & Related papers (2022-11-08T07:26:45Z) - Call-sign recognition and understanding for noisy air-traffic
transcripts using surveillance information [72.20674534231314]
Air traffic control (ATC) relies on communication via speech between pilot and air-traffic controller (ATCO)
The call-sign, as unique identifier for each flight, is used to address a specific pilot by the ATCO.
We propose a new call-sign recognition and understanding (CRU) system that addresses this issue.
The recognizer is trained to identify call-signs in noisy ATC transcripts and convert them into the standard International Civil Aviation Organization (ICAO) format.
arXiv Detail & Related papers (2022-04-13T11:30:42Z) - CI-AVSR: A Cantonese Audio-Visual Speech Dataset for In-car Command
Recognition [91.33781557979819]
We introduce a new dataset, Cantonese In-car Audio-Visual Speech Recognition (CI-AVSR)
It consists of 4,984 samples (8.3 hours) of 200 in-car commands recorded by 30 native Cantonese speakers.
We provide detailed statistics of both the clean and the augmented versions of our dataset.
arXiv Detail & Related papers (2022-01-11T06:32:12Z) - BERTraffic: A Robust BERT-Based Approach for Speaker Change Detection
and Role Identification of Air-Traffic Communications [2.270534915073284]
Speech Activity Detection (SAD) or diarization system fails and then two or more single speaker segments are in the same recording.
We developed a system that combines the segmentation of a SAD module with a BERT-based model that performs Speaker Change Detection (SCD) and Speaker Role Identification (SRI) based on ASR transcripts (i.e., diarization + SRI)
The proposed model reaches up to 0.90/0.95 F1-score on ATCO/pilot for SRI on several test sets.
arXiv Detail & Related papers (2021-10-12T07:25:12Z) - Contextual Semi-Supervised Learning: An Approach To Leverage
Air-Surveillance and Untranscribed ATC Data in ASR Systems [0.6465251961564605]
The callsign used to address an airplane is an essential part of all ATCo-pilot communications.
We propose a two-steps approach to add contextual knowledge during semi-supervised training to reduce the ASR system error rates.
arXiv Detail & Related papers (2021-04-08T09:53:54Z) - Knowledge Distillation for Improved Accuracy in Spoken Question
Answering [63.72278693825945]
We devise a training strategy to perform knowledge distillation from spoken documents and written counterparts.
Our work makes a step towards distilling knowledge from the language model as a supervision signal.
Experiments demonstrate that our approach outperforms several state-of-the-art language models on the Spoken-SQuAD dataset.
arXiv Detail & Related papers (2020-10-21T15:18:01Z) - Automatic Speech Recognition Benchmark for Air-Traffic Communications [1.175956452196938]
CleanSky EC-H2020 ATCO2 aims to develop an ASR-based platform to collect, organize and automatically pre-process ATCo speech-data from air space.
Cross-accent flaws due to speakers' accents are minimized due to the amount of data, making the system feasible for ATC environments.
arXiv Detail & Related papers (2020-06-18T06:49:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.