Mixture of Structural-and-Textual Retrieval over Text-rich Graph Knowledge Bases
- URL: http://arxiv.org/abs/2502.20317v3
- Date: Mon, 10 Mar 2025 14:43:15 GMT
- Title: Mixture of Structural-and-Textual Retrieval over Text-rich Graph Knowledge Bases
- Authors: Yongjia Lei, Haoyu Han, Ryan A. Rossi, Franck Dernoncourt, Nedim Lipka, Mahantesh M Halappanavar, Jiliang Tang, Yu Wang,
- Abstract summary: Text-rich Graph Knowledge Bases (TG-KBs) have become increasingly crucial for answering queries by providing textual and structural knowledge.<n>We propose a Mixture of Structural-and-Textual Retrieval (MoR) to retrieve these two types of knowledge via a Planning-Reasoning-Organizing framework.
- Score: 78.62158923194153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-rich Graph Knowledge Bases (TG-KBs) have become increasingly crucial for answering queries by providing textual and structural knowledge. However, current retrieval methods often retrieve these two types of knowledge in isolation without considering their mutual reinforcement and some hybrid methods even bypass structural retrieval entirely after neighboring aggregation. To fill in this gap, we propose a Mixture of Structural-and-Textual Retrieval (MoR) to retrieve these two types of knowledge via a Planning-Reasoning-Organizing framework. In the Planning stage, MoR generates textual planning graphs delineating the logic for answering queries. Following planning graphs, in the Reasoning stage, MoR interweaves structural traversal and textual matching to obtain candidates from TG-KBs. In the Organizing stage, MoR further reranks fetched candidates based on their structural trajectory. Extensive experiments demonstrate the superiority of MoR in harmonizing structural and textual retrieval with insights, including uneven retrieving performance across different query logics and the benefits of integrating structural trajectories for candidate reranking. Our code is available at https://github.com/Yoega/MoR.
Related papers
- Talking to GDELT Through Knowledge Graphs [0.6461717749486492]
We study various Retrieval Augmented Regeneration (RAG) approaches to gain an understanding of the strengths and weaknesses of each approach in a question-answering analysis.
To retrieve information from the text corpus we implement a traditional vector store RAG as well as state-of-the-art large language model (LLM) based approaches.
arXiv Detail & Related papers (2025-03-10T17:48:10Z) - RiTeK: A Dataset for Large Language Models Complex Reasoning over Textual Knowledge Graphs [12.846097618151951]
We develop a dataset for LLMs Complex Reasoning over Textual Knowledge Graphs (RiTeK) with a broad topological structure coverage.
We synthesize realistic user queries that integrate diverse topological structures, annotated information, and complex textual descriptions.
We introduce an enhanced Monte Carlo Tree Search (CTS) method, which automatically extracts relational path information from textual graphs for specific queries.
arXiv Detail & Related papers (2024-10-17T19:33:37Z) - Knowledge-Aware Query Expansion with Large Language Models for Textual and Relational Retrieval [49.42043077545341]
We propose a knowledge-aware query expansion framework, augmenting LLMs with structured document relations from knowledge graph (KG)<n>We leverage document texts as rich KG node representations and use document-based relation filtering for our Knowledge-Aware Retrieval (KAR)
arXiv Detail & Related papers (2024-10-17T17:03:23Z) - Augmenting Textual Generation via Topology Aware Retrieval [30.933176170660683]
We develop a Topology-aware Retrieval-augmented Generation framework.
This framework includes a retrieval module that selects texts based on their topological relationships.
We have curated established text-attributed networks and conducted comprehensive experiments to validate the effectiveness of this framework.
arXiv Detail & Related papers (2024-05-27T19:02:18Z) - STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases [93.96463520716759]
We develop STARK, a large-scale Semi-structure retrieval benchmark on Textual and Knowledge Bases.
Our benchmark covers three domains: product search, academic paper search, and queries in precision medicine.
We design a novel pipeline to synthesize realistic user queries that integrate diverse relational information and complex textual properties.
arXiv Detail & Related papers (2024-04-19T22:54:54Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
We introduce the Contextualization Distillation strategy, a plug-in-and-play approach compatible with both discriminative and generative KGC frameworks.
Our method begins by instructing large language models to transform compact, structural triplets into context-rich segments.
Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach.
arXiv Detail & Related papers (2024-01-28T08:56:49Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - Decomposing Complex Queries for Tip-of-the-tongue Retrieval [72.07449449115167]
Complex queries describe content elements (e.g., book characters or events), information beyond the document text.
This retrieval setting, called tip of the tongue (TOT), is especially challenging for models reliant on lexical and semantic overlap between query and document text.
We introduce a simple yet effective framework for handling such complex queries by decomposing the query into individual clues, routing those as sub-queries to specialized retrievers, and ensembling the results.
arXiv Detail & Related papers (2023-05-24T11:43:40Z) - VEM$^2$L: A Plug-and-play Framework for Fusing Text and Structure
Knowledge on Sparse Knowledge Graph Completion [14.537509860565706]
We propose a plug-and-play framework VEM2L over sparse Knowledge Graphs to fuse knowledge extracted from text and structure messages into a unity.
Specifically, we partition knowledge acquired by models into two nonoverlapping parts.
We also propose a new fusion strategy proved by Variational EM algorithm to fuse the generalization ability of models.
arXiv Detail & Related papers (2022-07-04T15:50:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.