T1-PILOT: Optimized Trajectories for T1 Mapping Acceleration
- URL: http://arxiv.org/abs/2502.20333v1
- Date: Thu, 27 Feb 2025 18:02:27 GMT
- Title: T1-PILOT: Optimized Trajectories for T1 Mapping Acceleration
- Authors: Tamir Shor, Moti Freiman, Chaim Baskin, Alex Bronstein,
- Abstract summary: We introduce T1-PILOT: an end-to-end method that explicitly incorporates the T1 signal relaxation model into the sampling-reconstruction framework.<n>Through extensive experiments on the CMRxRecon dataset, T1-PILOT significantly outperforms several baseline strategies.<n>Our results highlight that optimizing sampling trajectories in tandem with the physical relaxation model leads to both enhanced quantitative accuracy and reduced acquisition times.
- Score: 4.662327345551211
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cardiac T1 mapping provides critical quantitative insights into myocardial tissue composition, enabling the assessment of pathologies such as fibrosis, inflammation, and edema. However, the inherently dynamic nature of the heart imposes strict limits on acquisition times, making high-resolution T1 mapping a persistent challenge. Compressed sensing (CS) approaches have reduced scan durations by undersampling k-space and reconstructing images from partial data, and recent studies show that jointly optimizing the undersampling patterns with the reconstruction network can substantially improve performance. Still, most current T1 mapping pipelines rely on static, hand-crafted masks that do not exploit the full acceleration and accuracy potential. In this work, we introduce T1-PILOT: an end-to-end method that explicitly incorporates the T1 signal relaxation model into the sampling-reconstruction framework to guide the learning of non-Cartesian trajectories, crossframe alignment, and T1 decay estimation. Through extensive experiments on the CMRxRecon dataset, T1-PILOT significantly outperforms several baseline strategies (including learned single-mask and fixed radial or golden-angle sampling schemes), achieving higher T1 map fidelity at greater acceleration factors. In particular, we observe consistent gains in PSNR and VIF relative to existing methods, along with marked improvements in delineating finer myocardial structures. Our results highlight that optimizing sampling trajectories in tandem with the physical relaxation model leads to both enhanced quantitative accuracy and reduced acquisition times. Code for reproducing all results will be made publicly available upon publication.
Related papers
- Accelerated Patient-specific Non-Cartesian MRI Reconstruction using Implicit Neural Representations [8.781276186760962]
We develop a novel generative-adversarially trained implicit neural representations (k-GINR) for de novo undersampled non-Cartesian k-space reconstruction.
k-GINR consistently outperformed the baselines with a larger performance advantage observed at very high accelerations.
arXiv Detail & Related papers (2025-03-07T00:05:43Z) - RS-MOCO: A deep learning-based topology-preserving image registration method for cardiac T1 mapping [3.293391422431541]
There is currently a lack of effective, robust, and efficient methods for motion correction in cardiac T1 mapping.
We propose a deep learning-based and topology-preserving image registration framework for motion correction in cardiac T1 mapping.
arXiv Detail & Related papers (2024-10-15T14:38:35Z) - MBSS-T1: Model-Based Self-Supervised Motion Correction for Robust Cardiac T1 Mapping [14.798873955983714]
We introduce MBSS-T1, a self-supervised model for motion correction in cardiac T1 mapping.
Physical constraints ensure expected signal decay behavior, while anatomical constraints maintain realistic deformations.
MBSS-T1 outperformed baseline deep-learning-based image registration approaches in a 5-fold experiment.
arXiv Detail & Related papers (2024-08-21T21:03:36Z) - A gradient-based approach to fast and accurate head motion compensation in cone-beam CT [35.44857854720086]
This paper introduces a novel approach to CBCT motion estimation using a gradient-based optimization algorithm.
We drastically accelerate motion estimation yielding a 19-fold speed-up compared to existing methods.
It achieves a reduction in reprojection error from an initial average of 3mm to 0.61mm after motion compensation.
arXiv Detail & Related papers (2024-01-17T15:37:00Z) - Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion [56.38386580040991]
Consistency Trajectory Model (CTM) is a generalization of Consistency Models (CM)
CTM enables the efficient combination of adversarial training and denoising score matching loss to enhance performance.
Unlike CM, CTM's access to the score function can streamline the adoption of established controllable/conditional generation methods.
arXiv Detail & Related papers (2023-10-01T05:07:17Z) - PCMC-T1: Free-breathing myocardial T1 mapping with
Physically-Constrained Motion Correction [15.251935193140982]
We introduce PCMC-T1, a physically-constrained deep-learning model for motion correction in free-breathing T1 mapping.
We incorporate the signal decay model into the network architecture to encourage physically-plausible deformations along the longitudinal relaxation axis.
arXiv Detail & Related papers (2023-08-22T08:50:38Z) - Spatial and Modal Optimal Transport for Fast Cross-Modal MRI Reconstruction [54.19448988321891]
We propose an end-to-end deep learning framework that utilizes T1-weighted images (T1WIs) as auxiliary modalities to expedite T2WIs' acquisitions.
We employ Optimal Transport (OT) to synthesize T2WIs by aligning T1WIs and performing cross-modal synthesis.
We prove that the reconstructed T2WIs and the synthetic T2WIs become closer on the T2 image manifold with iterations increasing.
arXiv Detail & Related papers (2023-05-04T12:20:51Z) - Spatiotemporal Feature Learning Based on Two-Step LSTM and Transformer
for CT Scans [2.3682456328966115]
We propose a novel, effective, two-step-wise approach to tickle this issue for COVID-19 symptom classification thoroughly.
First, the semantic feature embedding of each slice for a CT scan is extracted by conventional backbone networks.
Then, we proposed a long short-term memory (LSTM) and Transformer-based sub-network to deal with temporal feature learning.
arXiv Detail & Related papers (2022-07-04T16:59:05Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Fast T2w/FLAIR MRI Acquisition by Optimal Sampling of Information
Complementary to Pre-acquired T1w MRI [52.656075914042155]
We propose an iterative framework to optimize the under-sampling pattern for MRI acquisition of another modality.
We have demonstrated superior performance of our learned under-sampling patterns on a public dataset.
arXiv Detail & Related papers (2021-11-11T04:04:48Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.