Bridging the Creativity Understanding Gap: Small-Scale Human Alignment Enables Expert-Level Humor Ranking in LLMs
- URL: http://arxiv.org/abs/2502.20356v1
- Date: Thu, 27 Feb 2025 18:29:09 GMT
- Title: Bridging the Creativity Understanding Gap: Small-Scale Human Alignment Enables Expert-Level Humor Ranking in LLMs
- Authors: Kuan Lok Zhou, Jiayi Chen, Siddharth Suresh, Reuben Narad, Timothy T. Rogers, Lalit K Jain, Robert D Nowak, Bob Mankoff, Jifan Zhang,
- Abstract summary: Large Language Models (LLMs) have shown significant limitations in understanding creative content.<n>We revisit this challenge by decomposing humor understanding into three components and systematically improve each.<n>Our refined approach achieves 82.4% accuracy in caption ranking, singificantly improving upon the previous 67% benchmark.
- Score: 17.44511150123112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have shown significant limitations in understanding creative content, as demonstrated by Hessel et al. (2023)'s influential work on the New Yorker Cartoon Caption Contest (NYCCC). Their study exposed a substantial gap between LLMs and humans in humor comprehension, establishing that understanding and evaluating creative content is key challenge in AI development. We revisit this challenge by decomposing humor understanding into three components and systematically improve each: enhancing visual understanding through improved annotation, utilizing LLM-generated humor reasoning and explanations, and implementing targeted alignment with human preference data. Our refined approach achieves 82.4% accuracy in caption ranking, singificantly improving upon the previous 67% benchmark and matching the performance of world-renowned human experts in this domain. Notably, while attempts to mimic subgroup preferences through various persona prompts showed minimal impact, model finetuning with crowd preferences proved remarkably effective. These findings reveal that LLM limitations in creative judgment can be effectively addressed through focused alignment to specific subgroups and individuals. Lastly, we propose the position that achieving artificial general intelligence necessitates systematic collection of human preference data across creative domains. We advocate that just as human creativity is deeply influenced by individual and cultural preferences, training LLMs with diverse human preference data may be essential for developing true creative understanding.
Related papers
- Are Today's LLMs Ready to Explain Well-Being Concepts? [17.02052397388858]
We construct a large-scale dataset comprising 43,880 explanations of 2,194 well-being concepts.<n>We introduce a principle-guided LLM-as-a-judge evaluation framework, employing dual judges to assess explanation quality.<n>We show that fine-tuning an open-source LLM using Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO) can significantly enhance the quality of generated explanations.
arXiv Detail & Related papers (2025-08-06T00:45:02Z) - Probing and Inducing Combinational Creativity in Vision-Language Models [52.76981145923602]
Recent advances in Vision-Language Models (VLMs) have sparked debate about whether their outputs reflect combinational creativity.
We propose the Identification-Explanation-Implication (IEI) framework, which decomposes creative processes into three levels.
To validate this framework, we curate CreativeMashup, a high-quality dataset of 666 artist-generated visual mashups annotated according to the IEI framework.
arXiv Detail & Related papers (2025-04-17T17:38:18Z) - Towards Characterizing Subjectivity of Individuals through Modeling Value Conflicts and Trade-offs [22.588557390720236]
We characterize subjectivity of individuals on social media and infer their moral judgments using Large Language Models.
We propose a framework, SOLAR, that observes value conflicts and trade-offs in the user-generated texts to better represent subjective ground of individuals.
arXiv Detail & Related papers (2025-04-17T04:20:05Z) - Humanlike Cognitive Patterns as Emergent Phenomena in Large Language Models [2.9312156642007294]
We systematically review Large Language Models' capabilities across three important cognitive domains: decision-making biases, reasoning, and creativity.<n>On decision-making, our synthesis reveals that while LLMs demonstrate several human-like biases, some biases observed in humans are absent.<n>On reasoning, advanced LLMs like GPT-4 exhibit deliberative reasoning akin to human System-2 thinking, while smaller models fall short of human-level performance.<n>A distinct dichotomy emerges in creativity: while LLMs excel in language-based creative tasks, such as storytelling, they struggle with divergent thinking tasks that require real-world context.
arXiv Detail & Related papers (2024-12-20T02:26:56Z) - Persuasion with Large Language Models: a Survey [49.86930318312291]
Large Language Models (LLMs) have created new disruptive possibilities for persuasive communication.
In areas such as politics, marketing, public health, e-commerce, and charitable giving, such LLM Systems have already achieved human-level or even super-human persuasiveness.
Our survey suggests that the current and future potential of LLM-based persuasion poses profound ethical and societal risks.
arXiv Detail & Related papers (2024-11-11T10:05:52Z) - Uncovering Factor Level Preferences to Improve Human-Model Alignment [58.50191593880829]
We introduce PROFILE, a framework that uncovers and quantifies the influence of specific factors driving preferences.
ProFILE's factor level analysis explains the 'why' behind human-model alignment and misalignment.
We demonstrate how leveraging factor level insights, including addressing misaligned factors, can improve alignment with human preferences.
arXiv Detail & Related papers (2024-10-09T15:02:34Z) - Aligning LLMs with Individual Preferences via Interaction [51.72200436159636]
We train large language models (LLMs) that can ''interact to align''<n>We develop a multi-turn preference dataset containing 3K+ multi-turn conversations in tree structures.<n>For evaluation, we establish the ALOE benchmark, consisting of 100 carefully selected examples and well-designed metrics to measure the customized alignment performance during conversations.
arXiv Detail & Related papers (2024-10-04T17:48:29Z) - Hate Personified: Investigating the role of LLMs in content moderation [64.26243779985393]
For subjective tasks such as hate detection, where people perceive hate differently, the Large Language Model's (LLM) ability to represent diverse groups is unclear.
By including additional context in prompts, we analyze LLM's sensitivity to geographical priming, persona attributes, and numerical information to assess how well the needs of various groups are reflected.
arXiv Detail & Related papers (2024-10-03T16:43:17Z) - Building Better AI Agents: A Provocation on the Utilisation of Persona in LLM-based Conversational Agents [4.8916211213796394]
This paper begins by examining the rationale and implications of imbuing CAs with unique personas.
We delve into the specific applications where the implementation of a persona is not just beneficial but critical for LLM-based CAs.
The paper underscores the necessity of a nuanced approach to persona integration, highlighting the potential challenges and ethical dilemmas that may arise.
arXiv Detail & Related papers (2024-05-26T11:36:48Z) - Divergent Creativity in Humans and Large Language Models [37.67363469600804]
The recent surge in the capabilities of Large Language Models has led to claims that they are approaching a level of creativity akin to human capabilities.
We leverage recent advances in creativity science to build a framework for in-depth analysis of divergent creativity in both state-of-the-art LLMs and a substantial dataset of 100,000 humans.
arXiv Detail & Related papers (2024-05-13T22:37:52Z) - CulturalTeaming: AI-Assisted Interactive Red-Teaming for Challenging LLMs' (Lack of) Multicultural Knowledge [69.82940934994333]
We introduce CulturalTeaming, an interactive red-teaming system that leverages human-AI collaboration to build challenging evaluation dataset.
Our study reveals that CulturalTeaming's various modes of AI assistance support annotators in creating cultural questions.
CULTURALBENCH-V0.1 is a compact yet high-quality evaluation dataset with users' red-teaming attempts.
arXiv Detail & Related papers (2024-04-10T00:25:09Z) - Can Language Models Recognize Convincing Arguments? [12.458437450959416]
Large language models (LLMs) have raised concerns about their potential to create and propagate convincing narratives.
We study their performance in detecting convincing arguments to gain insights into their persuasive capabilities.
arXiv Detail & Related papers (2024-03-31T17:38:33Z) - Assessing and Understanding Creativity in Large Language Models [33.37237667182931]
This paper aims to establish an efficient framework for assessing the level of creativity in large language models (LLMs)
By adapting the Torrance Tests of Creative Thinking, the research evaluates the creative performance of various LLMs across 7 tasks.
We found that the creativity of LLMs primarily falls short in originality, while excelling in elaboration.
arXiv Detail & Related papers (2024-01-23T05:19:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.