The Common Objects Underwater (COU) Dataset for Robust Underwater Object Detection
- URL: http://arxiv.org/abs/2502.20651v1
- Date: Fri, 28 Feb 2025 02:12:24 GMT
- Title: The Common Objects Underwater (COU) Dataset for Robust Underwater Object Detection
- Authors: Rishi Mukherjee, Sakshi Singh, Jack McWilliams, Junaed Sattar,
- Abstract summary: We introduce COU: Common Objects Underwater, an instance-segmented image dataset of commonly found man-made objects in multiple aquatic and marine environments.<n>COU contains approximately 10K segmented images, annotated from images collected during a number of underwater robot field trials in diverse locations.
- Score: 11.114588406606265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce COU: Common Objects Underwater, an instance-segmented image dataset of commonly found man-made objects in multiple aquatic and marine environments. COU contains approximately 10K segmented images, annotated from images collected during a number of underwater robot field trials in diverse locations. COU has been created to address the lack of datasets with robust class coverage curated for underwater instance segmentation, which is particularly useful for training light-weight, real-time capable detectors for Autonomous Underwater Vehicles (AUVs). In addition, COU addresses the lack of diversity in object classes since the commonly available underwater image datasets focus only on marine life. Currently, COU contains images from both closed-water (pool) and open-water (lakes and oceans) environments, of 24 different classes of objects including marine debris, dive tools, and AUVs. To assess the efficacy of COU in training underwater object detectors, we use three state-of-the-art models to evaluate its performance and accuracy, using a combination of standard accuracy and efficiency metrics. The improved performance of COU-trained detectors over those solely trained on terrestrial data demonstrates the clear advantage of training with annotated underwater images. We make COU available for broad use under open-source licenses.
Related papers
- Learning Underwater Active Perception in Simulation [51.205673783866146]
Turbidity can jeopardise the whole mission as it may prevent correct visual documentation of the inspected structures.
Previous works have introduced methods to adapt to turbidity and backscattering.
We propose a simple yet efficient approach to enable high-quality image acquisition of assets in a broad range of water conditions.
arXiv Detail & Related papers (2025-04-23T06:48:38Z) - UW-SDF: Exploiting Hybrid Geometric Priors for Neural SDF Reconstruction from Underwater Multi-view Monocular Images [63.32490897641344]
We propose a framework for reconstructing target objects from multi-view underwater images based on neural SDF.
We introduce hybrid geometric priors to optimize the reconstruction process, markedly enhancing the quality and efficiency of neural SDF reconstruction.
arXiv Detail & Related papers (2024-10-10T16:33:56Z) - FAFA: Frequency-Aware Flow-Aided Self-Supervision for Underwater Object Pose Estimation [65.01601309903971]
We introduce FAFA, a Frequency-Aware Flow-Aided self-supervised framework for 6D pose estimation of unmanned underwater vehicles (UUVs)
Our framework relies solely on the 3D model and RGB images, alleviating the need for any real pose annotations or other-modality data like depths.
We evaluate the effectiveness of FAFA on common underwater object pose benchmarks and showcase significant performance improvements compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-09-25T03:54:01Z) - Diving into Underwater: Segment Anything Model Guided Underwater Salient Instance Segmentation and A Large-scale Dataset [60.14089302022989]
Underwater vision tasks often suffer from low segmentation accuracy due to the complex underwater circumstances.
We construct the first large-scale underwater salient instance segmentation dataset (USIS10K)
We propose an Underwater Salient Instance architecture based on Segment Anything Model (USIS-SAM) specifically for the underwater domain.
arXiv Detail & Related papers (2024-06-10T06:17:33Z) - Improving Underwater Visual Tracking With a Large Scale Dataset and
Image Enhancement [70.2429155741593]
This paper presents a new dataset and general tracker enhancement method for Underwater Visual Object Tracking (UVOT)
It poses distinct challenges; the underwater environment exhibits non-uniform lighting conditions, low visibility, lack of sharpness, low contrast, camouflage, and reflections from suspended particles.
We propose a novel underwater image enhancement algorithm designed specifically to boost tracking quality.
The method has resulted in a significant performance improvement, of up to 5.0% AUC, of state-of-the-art (SOTA) visual trackers.
arXiv Detail & Related papers (2023-08-30T07:41:26Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - DeepAqua: Self-Supervised Semantic Segmentation of Wetland Surface Water
Extent with SAR Images using Knowledge Distillation [44.99833362998488]
We present DeepAqua, a self-supervised deep learning model that eliminates the need for manual annotations during the training phase.
We exploit cases where optical- and radar-based water masks coincide, enabling the detection of both open and vegetated water surfaces.
Experimental results show that DeepAqua outperforms other unsupervised methods by improving accuracy by 7%, Intersection Over Union by 27%, and F1 score by 14%.
arXiv Detail & Related papers (2023-05-02T18:06:21Z) - Knowledge Distillation for Feature Extraction in Underwater VSLAM [29.167521895895455]
This paper proposes a cross-modal knowledge distillation framework for training an underwater feature detection and matching network (UFEN)
In particular, we use in-air RGBD data to generate synthetic underwater images based on a physical underwater imaging formation model.
To test the effectiveness of our method, we built a new underwater dataset with groundtruth measurements named EASI.
arXiv Detail & Related papers (2023-03-31T11:33:21Z) - A Dataset with Multibeam Forward-Looking Sonar for Underwater Object
Detection [0.0]
Multibeam forward-looking sonar (MFLS) plays an important role in underwater detection.
There are several challenges to the research on underwater object detection with MFLS.
We present a novel dataset, consisting of over 9000 MFLS images captured using Tritech Gemini 1200ik sonar.
arXiv Detail & Related papers (2022-12-01T08:26:03Z) - Virtual Underwater Datasets for Autonomous Inspections [0.0]
This study builds a bespoke dataset from photographs of items captured in a laboratory environment.
Generative Adversarial Networks (GANs) were utilised to translate the laboratory object dataset into the underwater domain.
The resulting images closely resembled the real underwater environment when compared with real-world underwater ship hull images.
arXiv Detail & Related papers (2022-09-13T14:06:36Z) - SVAM: Saliency-guided Visual Attention Modeling by Autonomous Underwater
Robots [16.242924916178282]
This paper presents a holistic approach to saliency-guided visual attention modeling (SVAM) for use by autonomous underwater robots.
Our proposed model, named SVAM-Net, integrates deep visual features at various scales and semantics for effective salient object detection (SOD) in natural underwater images.
arXiv Detail & Related papers (2020-11-12T08:17:21Z) - A Benchmark dataset for both underwater image enhancement and underwater
object detection [34.25890702670983]
We provide a large-scale underwater object detection dataset with both bounding box annotations and high quality reference images.
The OUC dataset provides a platform to comprehensive study the influence of underwater image enhancement algorithms on the underwater object detection task.
arXiv Detail & Related papers (2020-06-29T03:12:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.