SemiSAM+: Rethinking Semi-Supervised Medical Image Segmentation in the Era of Foundation Models
- URL: http://arxiv.org/abs/2502.20749v1
- Date: Fri, 28 Feb 2025 05:54:41 GMT
- Title: SemiSAM+: Rethinking Semi-Supervised Medical Image Segmentation in the Era of Foundation Models
- Authors: Yichi Zhang, Bohao Lv, Le Xue, Wenbo Zhang, Yuchen Liu, Yu Fu, Yuan Cheng, Yuan Qi,
- Abstract summary: SemiSAM+ is a foundation model-driven SSL framework to efficiently learn from limited labeled data for medical image segmentation.<n>SemiSAM+ consists of one or multiple promptable foundation models as generalist models, and a trainable task-specific segmentation model as specialist model.<n>Experiments on two public datasets and one in-house clinical dataset demonstrate that SemiSAM+ achieves significant performance improvement.
- Score: 23.402987690611827
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based medical image segmentation typically requires large amount of labeled data for training, making it less applicable in clinical settings due to high annotation cost. Semi-supervised learning (SSL) has emerged as an appealing strategy due to its less dependence on acquiring abundant annotations from experts compared to fully supervised methods. Beyond existing model-centric advancements of SSL by designing novel regularization strategies, we anticipate a paradigmatic shift due to the emergence of promptable segmentation foundation models with universal segmentation capabilities using positional prompts represented by Segment Anything Model (SAM). In this paper, we present SemiSAM+, a foundation model-driven SSL framework to efficiently learn from limited labeled data for medical image segmentation. SemiSAM+ consists of one or multiple promptable foundation models as generalist models, and a trainable task-specific segmentation model as specialist model. For a given new segmentation task, the training is based on the specialist-generalist collaborative learning procedure, where the trainable specialist model delivers positional prompts to interact with the frozen generalist models to acquire pseudo-labels, and then the generalist model output provides the specialist model with informative and efficient supervision which benefits the automatic segmentation and prompt generation in turn. Extensive experiments on two public datasets and one in-house clinical dataset demonstrate that SemiSAM+ achieves significant performance improvement, especially under extremely limited annotation scenarios, and shows strong efficiency as a plug-and-play strategy that can be easily adapted to different specialist and generalist models.
Related papers
- Partially Supervised Unpaired Multi-Modal Learning for Label-Efficient Medical Image Segmentation [53.723234136550055]
We term the new learning paradigm as Partially Supervised Unpaired Multi-Modal Learning (PSUMML)
We propose a novel Decomposed partial class adaptation with snapshot Ensembled Self-Training (DEST) framework for it.
Our framework consists of a compact segmentation network with modality specific normalization layers for learning with partially labeled unpaired multi-modal data.
arXiv Detail & Related papers (2025-03-07T07:22:42Z) - Enhancing SAM with Efficient Prompting and Preference Optimization for Semi-supervised Medical Image Segmentation [30.524999223901645]
We propose an enhanced Segment Anything Model (SAM) framework that utilizes annotation-efficient prompts generated in a fully unsupervised fashion.
We adopt the direct preference optimization technique to design an optimal policy that enables the model to generate high-fidelity segmentations.
State-of-the-art performance of our framework in tasks such as lung segmentation, breast tumor segmentation, and organ segmentation across various modalities, including X-ray, ultrasound, and abdominal CT, justifies its effectiveness in low-annotation data scenarios.
arXiv Detail & Related papers (2025-03-06T17:28:48Z) - Learnable Prompting SAM-induced Knowledge Distillation for Semi-supervised Medical Image Segmentation [47.789013598970925]
We propose a learnable prompting SAM-induced Knowledge distillation framework (KnowSAM) for semi-supervised medical image segmentation.
Our model outperforms the state-of-the-art semi-supervised segmentation approaches.
arXiv Detail & Related papers (2024-12-18T11:19:23Z) - KA$^2$ER: Knowledge Adaptive Amalgamation of ExpeRts for Medical Images Segmentation [5.807887214293438]
We propose an adaptive amalgamation knowledge framework that aims to train a versatile foundation model to handle the joint goals of multiple expert models.
In particular, we first train an nnUNet-based expert model for each task, and reuse the pre-trained SwinUNTER as the target foundation model.
Within the hidden layer, the hierarchical attention mechanisms are designed to achieve adaptive merging of the target model to the hidden layer feature knowledge of all experts.
arXiv Detail & Related papers (2024-10-28T14:49:17Z) - SurgeryV2: Bridging the Gap Between Model Merging and Multi-Task Learning with Deep Representation Surgery [54.866490321241905]
Model merging-based multitask learning (MTL) offers a promising approach for performing MTL by merging multiple expert models.
In this paper, we examine the merged model's representation distribution and uncover a critical issue of "representation bias"
This bias arises from a significant distribution gap between the representations of the merged and expert models, leading to the suboptimal performance of the merged MTL model.
arXiv Detail & Related papers (2024-10-18T11:49:40Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - Cross Prompting Consistency with Segment Anything Model for Semi-supervised Medical Image Segmentation [44.54301473673582]
Semi-supervised learning (SSL) has achieved notable progress in medical image segmentation.
Recent developments in visual foundation models, such as the Segment Anything Model (SAM), have demonstrated remarkable adaptability.
We propose a cross-prompting consistency method with segment anything model (CPC-SAM) for semi-supervised medical image segmentation.
arXiv Detail & Related papers (2024-07-07T15:43:20Z) - SemiSAM: Enhancing Semi-Supervised Medical Image Segmentation via SAM-Assisted Consistency Regularization [23.28335241083164]
Semi-supervised methods can improve the performance by utilizing unlabeled data.
SemiSAM significantly improves the performance of existing semi-supervised frameworks when only one or a few labeled images are available.
arXiv Detail & Related papers (2023-12-11T12:03:30Z) - nnSAM: Plug-and-play Segment Anything Model Improves nnUNet Performance [12.169801149021566]
The Segment Anything Model (SAM) has emerged as a versatile tool for image segmentation without specific domain training.
Traditional models like nnUNet perform automatic segmentation during inference but need extensive domain-specific training.
We propose nnSAM, integrating SAM's robust feature extraction with nnUNet's automatic configuration to enhance segmentation accuracy on small datasets.
arXiv Detail & Related papers (2023-09-29T04:26:25Z) - Cheap Lunch for Medical Image Segmentation by Fine-tuning SAM on Few
Exemplars [19.725817146049707]
The Segment Anything Model (SAM) has demonstrated remarkable capabilities of scaled-up segmentation models.
However, the adoption of foundational models in the medical domain presents a challenge due to the difficulty and expense of labeling sufficient data.
This paper introduces an efficient and practical approach for fine-tuning SAM using a limited number of exemplars.
arXiv Detail & Related papers (2023-08-27T15:21:25Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.