Clustering Context in Off-Policy Evaluation
- URL: http://arxiv.org/abs/2502.21304v1
- Date: Fri, 28 Feb 2025 18:40:41 GMT
- Title: Clustering Context in Off-Policy Evaluation
- Authors: Daniel Guzman-Olivares, Philipp Schmidt, Jacek Golebiowski, Artur Bekasov,
- Abstract summary: Off-policy evaluation can leverage logged data to estimate the effectiveness of new policies in e-commerce, search engines, media streaming services, or healthcare.<n>The performance of baseline off-policy estimators like IPS deteriorates when the logging policy significantly differs from the evaluation policy.<n>Recent work proposes sharing information across similar actions to mitigate this problem.
- Score: 1.2024554708901514
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Off-policy evaluation can leverage logged data to estimate the effectiveness of new policies in e-commerce, search engines, media streaming services, or automatic diagnostic tools in healthcare. However, the performance of baseline off-policy estimators like IPS deteriorates when the logging policy significantly differs from the evaluation policy. Recent work proposes sharing information across similar actions to mitigate this problem. In this work, we propose an alternative estimator that shares information across similar contexts using clustering. We study the theoretical properties of the proposed estimator, characterizing its bias and variance under different conditions. We also compare the performance of the proposed estimator and existing approaches in various synthetic problems, as well as a real-world recommendation dataset. Our experimental results confirm that clustering contexts improves estimation accuracy, especially in deficient information settings.
Related papers
- Automated Off-Policy Estimator Selection via Supervised Learning [7.476028372444458]
Off-Policy Evaluation (OPE) problem consists of evaluating the performance of counterfactual policies with data collected by another one.
To solve the OPE problem, we resort to estimators, which aim to estimate in the most accurate way possible the performance that the counterfactual policies would have had if they were deployed in place of the logging policy.
We propose an automated data-driven OPE estimator selection method based on supervised learning.
arXiv Detail & Related papers (2024-06-26T02:34:48Z) - OPERA: Automatic Offline Policy Evaluation with Re-weighted Aggregates of Multiple Estimators [13.408838970377035]
offline policy evaluation (OPE) allows us to evaluate and estimate a new sequential decision-making policy's performance.
We propose a new algorithm that adaptively blends a set of OPE estimators given a dataset without relying on an explicit selection using a statistical procedure.
Our work contributes to improving ease of use for a general-purpose, estimator-agnostic, off-policy evaluation framework for offline RL.
arXiv Detail & Related papers (2024-05-27T23:51:20Z) - When is Off-Policy Evaluation (Reward Modeling) Useful in Contextual Bandits? A Data-Centric Perspective [64.73162159837956]
evaluating the value of a hypothetical target policy with only a logged dataset is important but challenging.
We propose DataCOPE, a data-centric framework for evaluating a target policy given a dataset.
Our empirical analysis of DataCOPE in the logged contextual bandit settings using healthcare datasets confirms its ability to evaluate both machine-learning and human expert policies.
arXiv Detail & Related papers (2023-11-23T17:13:37Z) - Uncertainty-Aware Instance Reweighting for Off-Policy Learning [63.31923483172859]
We propose a Uncertainty-aware Inverse Propensity Score estimator (UIPS) for improved off-policy learning.
Experiment results on synthetic and three real-world recommendation datasets demonstrate the advantageous sample efficiency of the proposed UIPS estimator.
arXiv Detail & Related papers (2023-03-11T11:42:26Z) - Off-policy evaluation for learning-to-rank via interpolating the
item-position model and the position-based model [83.83064559894989]
A critical need for industrial recommender systems is the ability to evaluate recommendation policies offline, before deploying them to production.
We develop a new estimator that mitigates the problems of the two most popular off-policy estimators for rankings.
In particular, the new estimator, called INTERPOL, addresses the bias of a potentially misspecified position-based model.
arXiv Detail & Related papers (2022-10-15T17:22:30Z) - Offline Policy Comparison with Confidence: Benchmarks and Baselines [28.775565917880915]
We create benchmarks for OPC with Confidence (OPCC), derived by adding sets of policy comparison queries to datasets from offline reinforcement learning.
We also present an empirical evaluation of the risk versus coverage trade-off for a class of model-based baselines.
arXiv Detail & Related papers (2022-05-22T04:28:25Z) - Doing Great at Estimating CATE? On the Neglected Assumptions in
Benchmark Comparisons of Treatment Effect Estimators [91.3755431537592]
We show that even in arguably the simplest setting, estimation under ignorability assumptions can be misleading.
We consider two popular machine learning benchmark datasets for evaluation of heterogeneous treatment effect estimators.
We highlight that the inherent characteristics of the benchmark datasets favor some algorithms over others.
arXiv Detail & Related papers (2021-07-28T13:21:27Z) - Variance-Aware Off-Policy Evaluation with Linear Function Approximation [85.75516599931632]
We study the off-policy evaluation problem in reinforcement learning with linear function approximation.
We propose an algorithm, VA-OPE, which uses the estimated variance of the value function to reweight the Bellman residual in Fitted Q-Iteration.
arXiv Detail & Related papers (2021-06-22T17:58:46Z) - Performance Evaluation of Adversarial Attacks: Discrepancies and
Solutions [51.8695223602729]
adversarial attack methods have been developed to challenge the robustness of machine learning models.
We propose a Piece-wise Sampling Curving (PSC) toolkit to effectively address the discrepancy.
PSC toolkit offers options for balancing the computational cost and evaluation effectiveness.
arXiv Detail & Related papers (2021-04-22T14:36:51Z) - Off-Policy Evaluation and Learning for External Validity under a
Covariate Shift [32.37842308026544]
We consider evaluating and training a new policy for the evaluation data by using the historical data obtained from a different policy.
The goal of off-policy evaluation (OPE) is to estimate the expected reward of a new policy over the evaluation data, and that of off-policy learning (OPL) is to find a new policy that maximizes the expected reward over the evaluation data.
arXiv Detail & Related papers (2020-02-26T17:18:43Z) - Efficient Policy Learning from Surrogate-Loss Classification Reductions [65.91730154730905]
We consider the estimation problem given by a weighted surrogate-loss classification reduction of policy learning.
We show that, under a correct specification assumption, the weighted classification formulation need not be efficient for policy parameters.
We propose an estimation approach based on generalized method of moments, which is efficient for the policy parameters.
arXiv Detail & Related papers (2020-02-12T18:54:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.