PI-HMR: Towards Robust In-bed Temporal Human Shape Reconstruction with Contact Pressure Sensing
- URL: http://arxiv.org/abs/2503.00068v2
- Date: Sat, 22 Mar 2025 10:01:54 GMT
- Title: PI-HMR: Towards Robust In-bed Temporal Human Shape Reconstruction with Contact Pressure Sensing
- Authors: Ziyu Wu, Yufan Xiong, Mengting Niu, Fangting Xie, Quan Wan, Qijun Ying, Boyan Liu, Xiaohui Cai,
- Abstract summary: Pressure-sensing bedsheets offer a promising solution for real-time motion reconstruction.<n>We introduce SMPLify-IB, an optimization method that overcomes the depth ambiguity issue in top-view scenarios.<n>We present PI-HMR, a temporal-based human shape estimator to regress meshes from pressure sequences.
- Score: 0.2890929553637981
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-term in-bed monitoring benefits automatic and real-time health management within healthcare, and the advancement of human shape reconstruction technologies further enhances the representation and visualization of users' activity patterns. However, existing technologies are primarily based on visual cues, facing serious challenges in non-light-of-sight and privacy-sensitive in-bed scenes. Pressure-sensing bedsheets offer a promising solution for real-time motion reconstruction. Yet, limited exploration in model designs and data have hindered its further development. To tackle these issues, we propose a general framework that bridges gaps in data annotation and model design. Firstly, we introduce SMPLify-IB, an optimization method that overcomes the depth ambiguity issue in top-view scenarios through gravity constraints, enabling generating high-quality 3D human shape annotations for in-bed datasets. Then we present PI-HMR, a temporal-based human shape estimator to regress meshes from pressure sequences. By integrating multi-scale feature fusion with high-pressure distribution and spatial position priors, PI-HMR outperforms SOTA methods with 17.01mm Mean-Per-Joint-Error decrease. This work provides a whole
Related papers
- SIGMAN:Scaling 3D Human Gaussian Generation with Millions of Assets [72.26350984924129]
We propose a latent space generation paradigm for 3D human digitization.
We transform the ill-posed low-to-high-dimensional mapping problem into a learnable distribution shift.
We employ the multi-view optimization approach combined with synthetic data to construct the HGS-1M dataset.
arXiv Detail & Related papers (2025-04-09T15:38:18Z) - Research on Personalized Compression Algorithm for Pre-trained Models Based on Homomorphic Entropy Increase [2.6513322539118582]
We explore the challenges and evolution of two key technologies in the current field of AI: Vision Transformer model and Large Language Model (LLM)
Vision Transformer captures global information by splitting images into small pieces, but its high reference count and compute overhead limit deployment on mobile devices.
LLM has revolutionized natural language processing, but it also faces huge deployment challenges.
arXiv Detail & Related papers (2024-08-16T11:56:49Z) - STGFormer: Spatio-Temporal GraphFormer for 3D Human Pose Estimation in Video [7.345621536750547]
This paper presents the S-Temporal GraphFormer framework (STGFormer) for 3D human pose estimation in videos.<n>First, we introduce a STG attention mechanism, designed to more effectively leverage the inherent graph distributions of human body.<n>Next, we present a Modulated Hop-wise Regular GCN to independently process temporal and spatial dimensions in parallel.<n>Finally, we demonstrate our method state-of-the-art performance on the Human3.6M and MPIINF-3DHP datasets.
arXiv Detail & Related papers (2024-07-14T06:45:27Z) - LiveHPS: LiDAR-based Scene-level Human Pose and Shape Estimation in Free
Environment [59.320414108383055]
We present LiveHPS, a novel single-LiDAR-based approach for scene-level human pose and shape estimation.
We propose a huge human motion dataset, named FreeMotion, which is collected in various scenarios with diverse human poses.
arXiv Detail & Related papers (2024-02-27T03:08:44Z) - NICP: Neural ICP for 3D Human Registration at Scale [35.631505786332454]
We propose a neural scalable registration method, NSR, for 3D Human registration.
NSR generalizes and scales across thousands of shapes and more than ten different data sources.
Our essential contribution is NICP, an ICP-style self-supervised task tailored to neural fields.
arXiv Detail & Related papers (2023-12-21T16:54:09Z) - Back to MLP: A Simple Baseline for Human Motion Prediction [59.18776744541904]
This paper tackles the problem of human motion prediction, consisting in forecasting future body poses from historically observed sequences.
We show that the performance of these approaches can be surpassed by a light-weight and purely architectural architecture with only 0.14M parameters.
An exhaustive evaluation on Human3.6M, AMASS and 3DPW datasets shows that our method, which we dub siMLPe, consistently outperforms all other approaches.
arXiv Detail & Related papers (2022-07-04T16:35:58Z) - Recovering 3D Human Mesh from Monocular Images: A Survey [49.00136388529404]
Estimating human pose and shape from monocular images is a long-standing problem in computer vision.
This survey focuses on the task of monocular 3D human mesh recovery.
arXiv Detail & Related papers (2022-03-03T18:56:08Z) - Geometry-Guided Progressive NeRF for Generalizable and Efficient Neural
Human Rendering [139.159534903657]
We develop a generalizable and efficient Neural Radiance Field (NeRF) pipeline for high-fidelity free-viewpoint human body details.
To better tackle self-occlusion, we devise a geometry-guided multi-view feature integration approach.
For achieving higher rendering efficiency, we introduce a geometry-guided progressive rendering pipeline.
arXiv Detail & Related papers (2021-12-08T14:42:10Z) - Temporal Predictive Coding For Model-Based Planning In Latent Space [80.99554006174093]
We present an information-theoretic approach that employs temporal predictive coding to encode elements in the environment that can be predicted across time.
We evaluate our model on a challenging modification of standard DMControl tasks where the background is replaced with natural videos that contain complex but irrelevant information to the planning task.
arXiv Detail & Related papers (2021-06-14T04:31:15Z) - Locally Aware Piecewise Transformation Fields for 3D Human Mesh
Registration [67.69257782645789]
We propose piecewise transformation fields that learn 3D translation vectors to map any query point in posed space to its correspond position in rest-pose space.
We show that fitting parametric models with poses by our network results in much better registration quality, especially for extreme poses.
arXiv Detail & Related papers (2021-04-16T15:16:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.