Protein Structure Tokenization: Benchmarking and New Recipe
- URL: http://arxiv.org/abs/2503.00089v1
- Date: Fri, 28 Feb 2025 15:14:33 GMT
- Title: Protein Structure Tokenization: Benchmarking and New Recipe
- Authors: Xinyu Yuan, Zichen Wang, Marcus Collins, Huzefa Rangwala,
- Abstract summary: We introduce StructTokenBench, a framework that comprehensively evaluates the quality and efficiency of structure tokenizers.<n>We also develop AminoAseed, a strategy that enhances codebook updates and optimally balances codebook size and dimension for improved tokenizer utilization and quality.
- Score: 16.842453216446987
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent years have witnessed a surge in the development of protein structural tokenization methods, which chunk protein 3D structures into discrete or continuous representations. Structure tokenization enables the direct application of powerful techniques like language modeling for protein structures, and large multimodal models to integrate structures with protein sequences and functional texts. Despite the progress, the capabilities and limitations of these methods remain poorly understood due to the lack of a unified evaluation framework. We first introduce StructTokenBench, a framework that comprehensively evaluates the quality and efficiency of structure tokenizers, focusing on fine-grained local substructures rather than global structures, as typical in existing benchmarks. Our evaluations reveal that no single model dominates all benchmarking perspectives. Observations of codebook under-utilization led us to develop AminoAseed, a simple yet effective strategy that enhances codebook gradient updates and optimally balances codebook size and dimension for improved tokenizer utilization and quality. Compared to the leading model ESM3, our method achieves an average of 6.31% performance improvement across 24 supervised tasks, with sensitivity and utilization rates increased by 12.83% and 124.03%, respectively.
Related papers
- Elucidating the Design Space of Multimodal Protein Language Models [69.3650883370033]
Multimodal protein language models (PLMs) integrate sequence and token-based structural information.
This paper systematically elucidates the design space of multimodal PLMs to overcome their limitations.
Our advancements approach finer-grained supervision, demonstrating that token-based multimodal PLMs can achieve robust structural modeling.
arXiv Detail & Related papers (2025-04-15T17:59:43Z) - "Principal Components" Enable A New Language of Images [79.45806370905775]
We introduce a novel visual tokenization framework that embeds a provable PCA-like structure into the latent token space.
Our approach achieves state-of-the-art reconstruction performance and enables better interpretability to align with the human vision system.
arXiv Detail & Related papers (2025-03-11T17:59:41Z) - Structure Language Models for Protein Conformation Generation [66.42864253026053]
Traditional physics-based simulation methods often struggle with sampling equilibrium conformations.
Deep generative models have shown promise in generating protein conformations as a more efficient alternative.
We introduce Structure Language Modeling as a novel framework for efficient protein conformation generation.
arXiv Detail & Related papers (2024-10-24T03:38:51Z) - ProteinBench: A Holistic Evaluation of Protein Foundation Models [53.59325047872512]
We introduce ProteinBench, a holistic evaluation framework for protein foundation models.
Our approach consists of three key components: (i) A taxonomic classification of tasks that broadly encompass the main challenges in the protein domain, based on the relationships between different protein modalities; (ii) A multi-metric evaluation approach that assesses performance across four key dimensions: quality, novelty, diversity, and robustness; and (iii) In-depth analyses from various user objectives, providing a holistic view of model performance.
arXiv Detail & Related papers (2024-09-10T06:52:33Z) - PDB-Struct: A Comprehensive Benchmark for Structure-based Protein Design [19.324059406159325]
We introduce two novel metrics: refoldability-based metric and stability-based metric.
ByProt, ProteinMPNN, and ESM-IF perform exceptionally well on our benchmark, while ESM-Design and AF-Design fall short.
Our proposed benchmark paves the way for a fair and comprehensive evaluation of protein design methods.
arXiv Detail & Related papers (2023-11-30T02:37:55Z) - Neural Embeddings for Protein Graphs [0.8258451067861933]
We propose a novel framework for embedding protein graphs in geometric vector spaces.
We learn an encoder function that preserves the structural distance between protein graphs.
Our framework achieves remarkable results in the task of protein structure classification.
arXiv Detail & Related papers (2023-06-07T14:50:34Z) - A Systematic Study of Joint Representation Learning on Protein Sequences
and Structures [38.94729758958265]
Learning effective protein representations is critical in a variety of tasks in biology such as predicting protein functions.
Recent sequence representation learning methods based on Protein Language Models (PLMs) excel in sequence-based tasks, but their direct adaptation to tasks involving protein structures remains a challenge.
Our study undertakes a comprehensive exploration of joint protein representation learning by integrating a state-of-the-art PLM with distinct structure encoders.
arXiv Detail & Related papers (2023-03-11T01:24:10Z) - Structure-informed Language Models Are Protein Designers [69.70134899296912]
We present LM-Design, a generic approach to reprogramming sequence-based protein language models (pLMs)
We conduct a structural surgery on pLMs, where a lightweight structural adapter is implanted into pLMs and endows it with structural awareness.
Experiments show that our approach outperforms the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2023-02-03T10:49:52Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
We present NeuralPLexer, a computational approach that can directly predict protein-ligand complex structures.
Our study suggests that a data-driven approach can capture the structural cooperativity between proteins and small molecules, showing promise in accelerating the design of enzymes, drug molecules, and beyond.
arXiv Detail & Related papers (2022-09-30T01:46:38Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
We propose a fully-differentiable approach for protein structure optimization, guided by a data-driven generative network.
Our EBM-Fold approach can efficiently produce high-quality decoys, compared against traditional Rosetta-based structure optimization routines.
arXiv Detail & Related papers (2021-05-11T03:40:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.