Input Specific Neural Networks
- URL: http://arxiv.org/abs/2503.00268v1
- Date: Sat, 01 Mar 2025 00:57:16 GMT
- Title: Input Specific Neural Networks
- Authors: Asghar A. Jadoon, D. Thomas Seidl, Reese E. Jones, Jan N. Fuhg,
- Abstract summary: The black-box of neural networks limits the ability to encode or impose specific relationships between inputs and outputs.<n>This paper presents two ISNNs, along with equations for first second derivatives of respect to the inputs.<n>We show how ISNNs can be used to learn structural relationships between inputs outputs via a binary gating mechanism.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The black-box nature of neural networks limits the ability to encode or impose specific structural relationships between inputs and outputs. While various studies have introduced architectures that ensure the network's output adheres to a particular form in relation to certain inputs, the majority of these approaches impose constraints on only a single set of inputs. This paper introduces a novel neural network architecture, termed the Input Specific Neural Network (ISNN), which extends this concept by allowing scalar-valued outputs to be subject to multiple constraints. Specifically, the ISNN can enforce convexity in some inputs, non-decreasing monotonicity combined with convexity with respect to others, and simple non-decreasing monotonicity or arbitrary relationships with additional inputs. The paper presents two distinct ISNN architectures, along with equations for the first and second derivatives of the output with respect to the inputs. These networks are broadly applicable. In this work, we restrict their usage to solving problems in computational mechanics. In particular, we show how they can be effectively applied to fitting data-driven constitutive models. We then embed our trained data-driven constitutive laws into a finite element solver where significant time savings can be achieved by using explicit manual differentiation using the derived equations as opposed to automatic differentiation. We also show how ISNNs can be used to learn structural relationships between inputs and outputs via a binary gating mechanism. Particularly, ISNNs are employed to model an anisotropic free energy potential to get the homogenized macroscopic response in a decoupled multiscale setting, where the network learns whether or not the potential should be modeled as polyconvex, and retains only the relevant layers while using the minimum number of inputs.
Related papers
- GINN-KAN: Interpretability pipelining with applications in Physics Informed Neural Networks [5.2969467015867915]
We introduce the concept of interpretability pipelineing, to incorporate multiple interpretability techniques to outperform each individual technique.
We evaluate two recent models selected for their potential to incorporate interpretability into standard neural network architectures.
We introduce a novel interpretable neural network GINN-KAN that synthesizes the advantages of both models.
arXiv Detail & Related papers (2024-08-27T04:57:53Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Universal approximation property of invertible neural networks [76.95927093274392]
Invertible neural networks (INNs) are neural network architectures with invertibility by design.
Thanks to their invertibility and the tractability of Jacobian, INNs have various machine learning applications such as probabilistic modeling, generative modeling, and representation learning.
arXiv Detail & Related papers (2022-04-15T10:45:26Z) - Modeling Structure with Undirected Neural Networks [20.506232306308977]
We propose undirected neural networks, a flexible framework for specifying computations that can be performed in any order.
We demonstrate the effectiveness of undirected neural architectures, both unstructured and structured, on a range of tasks.
arXiv Detail & Related papers (2022-02-08T10:06:51Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability.
We quantify the relevant structure of the data in terms of a novel notion of mutual complexity.
arXiv Detail & Related papers (2021-07-31T10:25:26Z) - PAC-learning gains of Turing machines over circuits and neural networks [1.4502611532302039]
We study the potential gains in sample efficiency that can bring in the principle of minimum description length.
We use Turing machines to represent universal models and circuits.
We highlight close relationships between classical open problems in Circuit Complexity and the tightness of these.
arXiv Detail & Related papers (2021-03-23T17:03:10Z) - Multi-Constitutive Neural Network for Large Deformation Poromechanics Problem [21.894584868482916]
We propose a novel method "multi-constitutive neural network" (MCNN) that one model can solve several different laws.
We found that MCNN trained to solve multiple PDEs outperforms individual neural network solvers trained with PDE in some cases.
arXiv Detail & Related papers (2020-10-11T07:36:16Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Physics informed deep learning for computational elastodynamics without
labeled data [13.084113582897965]
We present a physics-informed neural network (PINN) with mixed-variable output to model elastodynamics problems without resort to labeled data.
Results show the promise of PINN in the context of computational mechanics applications.
arXiv Detail & Related papers (2020-06-10T19:05:08Z) - Neural Additive Models: Interpretable Machine Learning with Neural Nets [77.66871378302774]
Deep neural networks (DNNs) are powerful black-box predictors that have achieved impressive performance on a wide variety of tasks.
We propose Neural Additive Models (NAMs) which combine some of the expressivity of DNNs with the inherent intelligibility of generalized additive models.
NAMs learn a linear combination of neural networks that each attend to a single input feature.
arXiv Detail & Related papers (2020-04-29T01:28:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.