CRUPL: A Semi-Supervised Cyber Attack Detection with Consistency Regularization and Uncertainty-aware Pseudo-Labeling in Smart Grid
- URL: http://arxiv.org/abs/2503.00358v1
- Date: Sat, 01 Mar 2025 05:49:23 GMT
- Title: CRUPL: A Semi-Supervised Cyber Attack Detection with Consistency Regularization and Uncertainty-aware Pseudo-Labeling in Smart Grid
- Authors: Smruti P. Dash, Kedar V. Khandeparkar, Nipun Agrawal,
- Abstract summary: Cyberattacks on smart grids can compromise data integrity and jeopardize the reliability of the power supply.<n>Traditional intrusion detection systems often need help to effectively detect novel and sophisticated attacks.<n>This work proposes a semi-supervised method for cyber-attack detection in smart grids by leveraging the labeled and unlabeled measurement data.
- Score: 0.5499796332553707
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The modern power grids are integrated with digital technologies and automation systems. The inclusion of digital technologies has made the smart grids vulnerable to cyber-attacks. Cyberattacks on smart grids can compromise data integrity and jeopardize the reliability of the power supply. Traditional intrusion detection systems often need help to effectively detect novel and sophisticated attacks due to their reliance on labeled training data, which may only encompass part of the spectrum of potential threats. This work proposes a semi-supervised method for cyber-attack detection in smart grids by leveraging the labeled and unlabeled measurement data. We implement consistency regularization and pseudo-labeling to identify deviations from expected behavior and predict the attack classes. We use a curriculum learning approach to improve pseudo-labeling performance, capturing the model uncertainty. We demonstrate the efficiency of the proposed method in detecting different types of cyberattacks, minimizing the false positives by implementing them on publicly available datasets. The method proposes a promising solution by improving the detection accuracy to 99% in the presence of unknown samples and significantly reducing false positives.
Related papers
- Learning in Multiple Spaces: Few-Shot Network Attack Detection with Metric-Fused Prototypical Networks [47.18575262588692]
We propose a novel Multi-Space Prototypical Learning framework tailored for few-shot attack detection.<n>By leveraging Polyak-averaged prototype generation, the framework stabilizes the learning process and effectively adapts to rare and zero-day attacks.<n> Experimental results on benchmark datasets demonstrate that MSPL outperforms traditional approaches in detecting low-profile and novel attack types.
arXiv Detail & Related papers (2024-12-28T00:09:46Z) - CryptoFormalEval: Integrating LLMs and Formal Verification for Automated Cryptographic Protocol Vulnerability Detection [41.94295877935867]
We introduce a benchmark to assess the ability of Large Language Models to autonomously identify vulnerabilities in new cryptographic protocols.
We created a dataset of novel, flawed, communication protocols and designed a method to automatically verify the vulnerabilities found by the AI agents.
arXiv Detail & Related papers (2024-11-20T14:16:55Z) - GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
We propose GAN-GRID a novel adversarial attack targeting the stability prediction system of a smart grid tailored to real-world constraints.
Our findings reveal that an adversary armed solely with the stability model's output, devoid of data or model knowledge, can craft data classified as stable with an Attack Success Rate (ASR) of 0.99.
arXiv Detail & Related papers (2024-05-20T14:43:46Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - An Approach to Abstract Multi-stage Cyberattack Data Generation for ML-Based IDS in Smart Grids [2.5655761752240505]
We propose a method to generate synthetic data using a graph-based approach for training machine learning models in smart grids.
We use an abstract form of multi-stage cyberattacks defined via graph formulations and simulate the propagation behavior of attacks in the network.
arXiv Detail & Related papers (2023-12-21T11:07:51Z) - Adaptive Attack Detection in Text Classification: Leveraging Space Exploration Features for Text Sentiment Classification [44.99833362998488]
Adversarial example detection plays a vital role in adaptive cyber defense, especially in the face of rapidly evolving attacks.
We propose a novel approach that leverages the power of BERT (Bidirectional Representations from Transformers) and introduces the concept of Space Exploration Features.
arXiv Detail & Related papers (2023-08-29T23:02:26Z) - A Heterogeneous Graph Learning Model for Cyber-Attack Detection [4.559898668629277]
A cyber-attack is a malicious attempt by hackers to breach the target information system.
This paper proposes an intelligent cyber-attack detection method based on provenance data.
Experiment results show that the proposed method outperforms other learning based detection models.
arXiv Detail & Related papers (2021-12-16T16:03:39Z) - Certifiers Make Neural Networks Vulnerable to Availability Attacks [70.69104148250614]
We show for the first time that fallback strategies can be deliberately triggered by an adversary.
In addition to naturally occurring abstains for some inputs and perturbations, the adversary can use training-time attacks to deliberately trigger the fallback.
We design two novel availability attacks, which show the practical relevance of these threats.
arXiv Detail & Related papers (2021-08-25T15:49:10Z) - Online Dictionary Learning Based Fault and Cyber Attack Detection for
Power Systems [4.657875410615595]
This paper deals with the event and intrusion detection problem by leveraging a stream data mining classifier.
We first build a dictionary by learning higher-level features from unlabeled data.
Then, the labeled data are represented as sparse linear combinations of learned dictionary atoms.
We capitalize on those sparse codes to train the online classifier along with efficient change detectors.
arXiv Detail & Related papers (2021-08-24T23:17:58Z) - Launching Adversarial Attacks against Network Intrusion Detection
Systems for IoT [5.077661193116692]
Technology is shifting towards a profit-driven Internet of Things market where security is an afterthought.
Traditional defending approaches are no longer sufficient to detect both known and unknown attacks to high accuracy.
Machine learning intrusion detection systems have proven their success in identifying unknown attacks with high precision.
arXiv Detail & Related papers (2021-04-26T09:36:29Z) - Active Fuzzing for Testing and Securing Cyber-Physical Systems [8.228859318969082]
We propose active fuzzing, an automatic approach for finding test suites of packet-level CPS network attacks.
Key to our solution is the use of online active learning, which iteratively updates the models by sampling payloads.
We evaluate the efficacy of active fuzzing by implementing it for a water purification plant testbed, finding it can automatically discover a test suite of flow, pressure, and over/underflow attacks.
arXiv Detail & Related papers (2020-05-28T16:19:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.