Asynchronous Personalized Federated Learning through Global Memorization
- URL: http://arxiv.org/abs/2503.00407v1
- Date: Sat, 01 Mar 2025 09:00:33 GMT
- Title: Asynchronous Personalized Federated Learning through Global Memorization
- Authors: Fan Wan, Yuchen Li, Xueqi Qiu, Rui Sun, Leyuan Zhang, Xingyu Miao, Tianyu Zhang, Haoran Duan, Yang Long,
- Abstract summary: Federated Learning offers a privacy preserving solution by enabling collaborative model training across decentralized devices without centralizing sensitive data.<n>We propose the Asynchronous Personalized Federated Learning framework, which empowers clients to develop personalized models using a server side semantic generator.<n>This generator, trained via data free knowledge transfer under global model supervision, enhances client data diversity by producing both seen and unseen samples.<n>To counter the risks of synthetic data impairing training, we introduce a decoupled model method, ensuring robust personalization.
- Score: 16.630360485032163
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proliferation of Internet of Things devices and advances in communication technology have unleashed an explosion of personal data, amplifying privacy concerns amid stringent regulations like GDPR and CCPA. Federated Learning offers a privacy preserving solution by enabling collaborative model training across decentralized devices without centralizing sensitive data. However, statistical heterogeneity from non-independent and identically distributed datasets and system heterogeneity due to client dropouts particularly those with monopolistic classes severely degrade the global model's performance. To address these challenges, we propose the Asynchronous Personalized Federated Learning framework, which empowers clients to develop personalized models using a server side semantic generator. This generator, trained via data free knowledge transfer under global model supervision, enhances client data diversity by producing both seen and unseen samples, the latter enabled by Zero-Shot Learning to mitigate dropout-induced data loss. To counter the risks of synthetic data impairing training, we introduce a decoupled model interpolation method, ensuring robust personalization. Extensive experiments demonstrate that AP FL significantly outperforms state of the art FL methods in tackling non-IID distributions and client dropouts, achieving superior accuracy and resilience across diverse real-world scenarios.
Related papers
- Diversity-Driven Learning: Tackling Spurious Correlations and Data Heterogeneity in Federated Models [21.672445835824053]
Federated Learning (FL) enables decentralized training of machine learning models on distributed data.
In real-world FL settings, client data is often non-identically distributed and imbalanced.
We propose FedDiverse, a novel client selection algorithm in FL which is designed to manage and leverage data heterogeneity.
arXiv Detail & Related papers (2025-04-15T14:20:42Z) - HFedCKD: Toward Robust Heterogeneous Federated Learning via Data-free Knowledge Distillation and Two-way Contrast [10.652998357266934]
We propose a system heterogeneous federation method based on data-free knowledge distillation and two-way contrast (HFedCKD)
HFedCKD effectively alleviates the knowledge offset caused by a low participation rate under data-free knowledge distillation and improves the performance and stability of the model.
We conduct extensive experiments on image and IoT datasets to comprehensively evaluate and verify the generalization and robustness of the proposed HFedCKD framework.
arXiv Detail & Related papers (2025-03-09T08:32:57Z) - FedDUAL: A Dual-Strategy with Adaptive Loss and Dynamic Aggregation for Mitigating Data Heterogeneity in Federated Learning [12.307490659840845]
Federated Learning (FL) combines locally optimized models from various clients into a unified global model.<n>FL encounters significant challenges such as performance degradation, slower convergence, and reduced robustness of the global model.<n>We introduce an innovative dual-strategy approach designed to effectively resolve these issues.
arXiv Detail & Related papers (2024-12-05T18:42:29Z) - Adversarial Federated Consensus Learning for Surface Defect Classification Under Data Heterogeneity in IIoT [8.48069043458347]
It's difficult to collect and centralize sufficient training data from various entities in Industrial Internet of Things (IIoT)
Federated learning (FL) provides a solution by enabling collaborative global model training across clients.
We propose a novel personalized FL approach, named Adversarial Federated Consensus Learning (AFedCL)
arXiv Detail & Related papers (2024-09-24T03:59:32Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Fed-QSSL: A Framework for Personalized Federated Learning under Bitwidth
and Data Heterogeneity [14.313847382199059]
Federated quantization-based self-supervised learning scheme (Fed-QSSL) designed to address heterogeneity in FL systems.
Fed-QSSL deploys de-quantization, weighted aggregation and re-quantization, ultimately creating models personalized to both data distribution and specific infrastructure of each client's device.
arXiv Detail & Related papers (2023-12-20T19:11:19Z) - One-Shot Federated Learning with Classifier-Guided Diffusion Models [44.604485649167216]
One-shot federated learning (OSFL) has gained attention in recent years due to its low communication cost.
In this paper, we explore the novel opportunities that diffusion models bring to OSFL and propose FedCADO.
FedCADO generates data that complies with clients' distributions and subsequently training the aggregated model on the server.
arXiv Detail & Related papers (2023-11-15T11:11:25Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data.
We propose a novel federated learning system that employs zero-shot data augmentation on under-represented data to mitigate statistical heterogeneity and encourage more uniform accuracy performance across clients in federated networks.
We study two variants of this scheme, Fed-ZDAC (federated learning with zero-shot data augmentation at the clients) and Fed-ZDAS (federated learning with zero-shot data augmentation at the server).
arXiv Detail & Related papers (2021-04-27T18:23:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.