Efficient Prompting for Continual Adaptation to Missing Modalities
- URL: http://arxiv.org/abs/2503.00528v1
- Date: Sat, 01 Mar 2025 15:09:37 GMT
- Title: Efficient Prompting for Continual Adaptation to Missing Modalities
- Authors: Zirun Guo, Shulei Wang, Wang Lin, Weicai Yan, Yangyang Wu, Tao Jin,
- Abstract summary: We formulate the dynamic missing modality problem as a continual learning task.<n>We introduce three types of prompts: modality-specific, task-aware, and task-specific prompts.<n>These prompts enable the model to learn intra-modality, inter-modality, intra-task, and inter-task features.
- Score: 7.782217188939437
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Missing modality issues are common in real-world applications, arising from factors such as equipment failures and privacy concerns. When fine-tuning pre-trained models on downstream datasets with missing modalities, performance can degrade significantly. Current methods often aggregate various missing cases to train recovery modules or align multimodal features, resulting in suboptimal performance, high computational costs, and the risk of catastrophic forgetting in continual environments where data arrives sequentially. In this paper, we formulate the dynamic missing modality problem as a continual learning task and introduce the continual multimodal missing modality task. To address this challenge efficiently, we introduce three types of prompts: modality-specific, task-aware, and task-specific prompts. These prompts enable the model to learn intra-modality, inter-modality, intra-task, and inter-task features. Furthermore, we propose a contrastive task interaction strategy to explicitly learn prompts correlating different modalities. We conduct extensive experiments on three public datasets, where our method consistently outperforms state-of-the-art approaches.
Related papers
- Retrieval-Augmented Dynamic Prompt Tuning for Incomplete Multimodal Learning [27.867369806400834]
We propose RAGPT, a novel Retrieval-AuGmented dynamic Prompt Tuning framework.
RAGPT comprises three modules: (I) the multi-channel retriever, (II) the missing modality generator, and (III) the context-aware prompter.
Experiments conducted on three real-world datasets show that RAGPT consistently outperforms all competitive baselines in handling incomplete modality problems.
arXiv Detail & Related papers (2025-01-02T07:39:48Z) - Deep Correlated Prompting for Visual Recognition with Missing Modalities [22.40271366031256]
Large-scale multimodal models have shown excellent performance over a series of tasks powered by the large corpus of paired multimodal training data.
However, this simple assumption may not always hold in the real world due to privacy constraints or collection difficulty.
We refer to prompt learning to adapt large pretrained multimodal models to handle missing-modality scenarios by regarding different missing cases as different types of input.
arXiv Detail & Related papers (2024-10-09T05:28:43Z) - Missing Modality Prediction for Unpaired Multimodal Learning via Joint Embedding of Unimodal Models [6.610033827647869]
In real-world scenarios, consistently acquiring complete multimodal data presents significant challenges.
This often leads to the issue of missing modalities, where data for certain modalities are absent.
We propose a novel framework integrating parameter-efficient fine-tuning of unimodal pretrained models with a self-supervised joint-embedding learning method.
arXiv Detail & Related papers (2024-07-17T14:44:25Z) - Multimodal Prompt Learning with Missing Modalities for Sentiment Analysis and Emotion Recognition [52.522244807811894]
We propose a novel multimodal Transformer framework using prompt learning to address the issue of missing modalities.
Our method introduces three types of prompts: generative prompts, missing-signal prompts, and missing-type prompts.
Through prompt learning, we achieve a substantial reduction in the number of trainable parameters.
arXiv Detail & Related papers (2024-07-07T13:55:56Z) - HEMM: Holistic Evaluation of Multimodal Foundation Models [91.60364024897653]
Multimodal foundation models can holistically process text alongside images, video, audio, and other sensory modalities.
It is challenging to characterize and study progress in multimodal foundation models, given the range of possible modeling decisions, tasks, and domains.
arXiv Detail & Related papers (2024-07-03T18:00:48Z) - Borrowing Treasures from Neighbors: In-Context Learning for Multimodal Learning with Missing Modalities and Data Scarcity [9.811378971225727]
This paper extends the current research into missing modalities to the low-data regime.
It is often expensive to get full-modality data and sufficient annotated training samples.
We propose to use retrieval-augmented in-context learning to address these two crucial issues.
arXiv Detail & Related papers (2024-03-14T14:19:48Z) - Data-CUBE: Data Curriculum for Instruction-based Sentence Representation
Learning [85.66907881270785]
We propose a data curriculum method, namely Data-CUBE, that arranges the orders of all the multi-task data for training.
In the task level, we aim to find the optimal task order to minimize the total cross-task interference risk.
In the instance level, we measure the difficulty of all instances per task, then divide them into the easy-to-difficult mini-batches for training.
arXiv Detail & Related papers (2024-01-07T18:12:20Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Learning Unseen Modality Interaction [54.23533023883659]
Multimodal learning assumes all modality combinations of interest are available during training to learn cross-modal correspondences.
We pose the problem of unseen modality interaction and introduce a first solution.
It exploits a module that projects the multidimensional features of different modalities into a common space with rich information preserved.
arXiv Detail & Related papers (2023-06-22T10:53:10Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.