Aerial Secure Collaborative Communications under Eavesdropper Collusion in Low-altitude Economy: A Generative Swarm Intelligent Approach
- URL: http://arxiv.org/abs/2503.00721v1
- Date: Sun, 02 Mar 2025 04:02:58 GMT
- Title: Aerial Secure Collaborative Communications under Eavesdropper Collusion in Low-altitude Economy: A Generative Swarm Intelligent Approach
- Authors: Jiahui Li, Geng Sun, Qingqing Wu, Shuang Liang, Jiacheng Wang, Dusit Niyato, Dong In Kim,
- Abstract summary: We introduce distributed collaborative beamforming (DCB) into AAV swarms and handle the eavesdropper collusion by controlling the corresponding signal distributions.<n>We minimize the two-way known secrecy capacity and maximum sidelobe level to avoid information leakage from the known and unknown eavesdroppers.<n>We propose a novel generative swarm intelligence (GenSI) framework to solve the problem with less overhead.
- Score: 84.20358039333756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we aim to introduce distributed collaborative beamforming (DCB) into AAV swarms and handle the eavesdropper collusion by controlling the corresponding signal distributions. Specifically, we consider a two-way DCB-enabled aerial communication between two AAV swarms and construct these swarms as two AAV virtual antenna arrays. Then, we minimize the two-way known secrecy capacity and maximum sidelobe level to avoid information leakage from the known and unknown eavesdroppers, respectively. Simultaneously, we also minimize the energy consumption of AAVs when constructing virtual antenna arrays. Due to the conflicting relationships between secure performance and energy efficiency, we consider these objectives by formulating a multi-objective optimization problem, which is NP-hard and with a large number of decision variables. Accordingly, we design a novel generative swarm intelligence (GenSI) framework to solve the problem with less overhead, which contains a conditional variational autoencoder (CVAE)-based generative method and a proposed powerful swarm intelligence algorithm. In this framework, CVAE can collect expert solutions obtained by the swarm intelligence algorithm in other environment states to explore characteristics and patterns, thereby directly generating high-quality initial solutions in new environment factors for the swarm intelligence algorithm to search solution space efficiently. Simulation results show that the proposed swarm intelligence algorithm outperforms other state-of-the-art baseline algorithms, and the GenSI can achieve similar optimization results by using far fewer iterations than the ordinary swarm intelligence algorithm. Experimental tests demonstrate that introducing the CVAE mechanism achieves a 58.7% reduction in execution time, which enables the deployment of GenSI even on AAV platforms with limited computing power.
Related papers
- Task Assignment and Exploration Optimization for Low Altitude UAV Rescue via Generative AI Enhanced Multi-agent Reinforcement Learning [44.02103029265148]
We formulate the multi-objective optimization problem of task assignment and exploration optimization in UAVs.
Our objective is to minimize task completion time and energy consumption while ensuring system stability over time.
We propose an algorithm named HG-MADDPG, which combines the Hungarian algorithm with a generative diffusion model (GDM)-based multi-agent deep deterministic policy gradient (MADDPG) approach.
arXiv Detail & Related papers (2025-04-18T08:44:06Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - UAV Swarm-enabled Collaborative Secure Relay Communications with
Time-domain Colluding Eavesdropper [115.56455278813756]
Unmanned aerial vehicles (UAV) as aerial relays are practically appealing for assisting Internet Things (IoT) network.
In this work, we aim to utilize the UAV to assist secure communication between the UAV base station and terminal terminal devices.
arXiv Detail & Related papers (2023-10-03T11:47:01Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - AI-based Radio and Computing Resource Allocation and Path Planning in
NOMA NTNs: AoI Minimization under CSI Uncertainty [23.29963717212139]
We develop a hierarchical aerial computing framework composed of high altitude platform (HAP) and unmanned aerial vehicles (UAVs)
It is shown that task scheduling significantly reduces the average AoI.
It is shown that power allocation has a marginal effect on the average AoI compared to using full transmission power for all users.
arXiv Detail & Related papers (2023-05-01T11:52:15Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Resource-constrained Federated Edge Learning with Heterogeneous Data:
Formulation and Analysis [8.863089484787835]
We propose a distributed approximate Newton-type Newton-type training scheme, namely FedOVA, to solve the heterogeneous statistical challenge brought by heterogeneous data.
FedOVA decomposes a multi-class classification problem into more straightforward binary classification problems and then combines their respective outputs using ensemble learning.
arXiv Detail & Related papers (2021-10-14T17:35:24Z) - Energy Minimization in UAV-Aided Networks: Actor-Critic Learning for
Constrained Scheduling Optimization [30.742052801257998]
In unmanned aerial vehicle (UAV) applications, the UAV's limited energy supply and storage have triggered the development of intelligent energy-conserving solutions.
In this paper, we investigate energy-DSOS solution jointly optimizing data-transmission scheduling hovering time.
arXiv Detail & Related papers (2020-06-24T10:44:28Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.