LLMs are everywhere: Ubiquitous Utilization of AI Models through Air Computing
- URL: http://arxiv.org/abs/2503.00767v1
- Date: Sun, 02 Mar 2025 07:24:34 GMT
- Title: LLMs are everywhere: Ubiquitous Utilization of AI Models through Air Computing
- Authors: Baris Yamansavascilar, Atay Ozgovde, Cem Ersoy,
- Abstract summary: This study explores the synergy between Large Language Models (LLMs) and air computing.<n>We present a disaster response case study demonstrating how the collaborative utilization of LLMs and air computing can significantly improve outcomes in critical situations.
- Score: 6.185645393091031
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We are witnessing a new era where problem-solving and cognitive tasks are being increasingly delegated to Large Language Models (LLMs) across diverse domains, ranging from code generation to holiday planning. This trend also creates a demand for the ubiquitous execution of LLM-powered applications in a wide variety of environments in which traditional terrestrial 2D networking infrastructures may prove insufficient. A promising solution in this context is to extend edge computing into a 3D setting to include aerial platforms organized in multiple layers, a paradigm we refer to as air computing, to augment local devices for running LLM and Generative AI (GenAI) applications. This approach alleviates the strain on existing infrastructure while enhancing service efficiency by offloading computational tasks to the corresponding air units such as UAVs. Furthermore, the coordinated deployment of various air units can significantly improve the Quality of Experience (QoE) by ensuring seamless, adaptive, and resilient task execution. In this study, we investigate the synergy between LLM-based applications and air computing, exploring their potential across various use cases. Additionally, we present a disaster response case study demonstrating how the collaborative utilization of LLMs and air computing can significantly improve outcomes in critical situations.
Related papers
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Intelligent Mobile AI-Generated Content Services via Interactive Prompt Engineering and Dynamic Service Provisioning [55.641299901038316]
AI-generated content can organize collaborative Mobile AIGC Service Providers (MASPs) at network edges to provide ubiquitous and customized content for resource-constrained users.<n>Such a paradigm faces two significant challenges: 1) raw prompts often lead to poor generation quality due to users' lack of experience with specific AIGC models, and 2) static service provisioning fails to efficiently utilize computational and communication resources.<n>We develop an interactive prompt engineering mechanism that leverages a Large Language Model (LLM) to generate customized prompt corpora and employs Inverse Reinforcement Learning (IRL) for policy imitation.
arXiv Detail & Related papers (2025-02-17T03:05:20Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
The low-altitude economy (LAE), driven by unmanned aerial vehicles (UAVs) and other aircraft, has revolutionized fields such as transportation, agriculture, and environmental monitoring.
In the upcoming six-generation (6G) era, UAV-assisted mobile edge computing (MEC) is particularly crucial in challenging environments such as mountainous or disaster-stricken areas.
The task offloading problem is one of the key issues in UAV-assisted MEC, primarily addressing the trade-off between minimizing the task delay and the energy consumption of the UAV.
arXiv Detail & Related papers (2025-01-11T02:32:42Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - Large Language Models for UAVs: Current State and Pathways to the Future [6.85423435360359]
Unmanned Aerial Vehicles (UAVs) have emerged as a transformative technology across diverse sectors.
This work explores the significant potential of integrating UAVs and Large Language Models (LLMs) to propel the development of autonomous systems.
arXiv Detail & Related papers (2024-05-02T21:30:10Z) - An LLM-Based Digital Twin for Optimizing Human-in-the Loop Systems [13.388869442538399]
We present a case study that employs large language models (LLMs) to mimic the behaviors and thermal preferences of various population groups in a shopping mall.
The aggregated thermal preferences are integrated into an agent-in-the-loop based reinforcement learning algorithm AitL-RL.
Our results show that LLMs are capable of simulating complex population movements within large open spaces.
arXiv Detail & Related papers (2024-03-25T14:32:28Z) - Multi-Objective Optimization Using Adaptive Distributed Reinforcement Learning [8.471466670802815]
We propose a multi-objective, multi-agent reinforcement learning (MARL) algorithm with high learning efficiency and low computational requirements.
We test our algorithm in an ITS environment with edge cloud computing.
Our algorithm also addresses various practical concerns with its modularized and asynchronous online training method.
arXiv Detail & Related papers (2024-03-13T18:05:16Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Towards Efficient Generative Large Language Model Serving: A Survey from
Algorithms to Systems [14.355768064425598]
generative large language models (LLMs) stand at the forefront, revolutionizing how we interact with our data.
However, the computational intensity and memory consumption of deploying these models present substantial challenges in terms of serving efficiency.
This survey addresses the imperative need for efficient LLM serving methodologies from a machine learning system (MLSys) research perspective.
arXiv Detail & Related papers (2023-12-23T11:57:53Z) - Towards Scalable Wireless Federated Learning: Challenges and Solutions [40.68297639420033]
federated learning (FL) emerges as an effective distributed machine learning framework.
We discuss the challenges and solutions of achieving scalable wireless FL from the perspectives of both network design and resource orchestration.
arXiv Detail & Related papers (2023-10-08T08:55:03Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.