STAR-Edge: Structure-aware Local Spherical Curve Representation for Thin-walled Edge Extraction from Unstructured Point Clouds
- URL: http://arxiv.org/abs/2503.00801v1
- Date: Sun, 02 Mar 2025 08:51:13 GMT
- Title: STAR-Edge: Structure-aware Local Spherical Curve Representation for Thin-walled Edge Extraction from Unstructured Point Clouds
- Authors: Zikuan Li, Honghua Chen, Yuecheng Wang, Sibo Wu, Mingqiang Wei, Jun Wang,
- Abstract summary: We introduce STAR-Edge, a novel approach for detecting and refining edge points in thin-walled structures.<n>Our method leverages a unique representation-the local spherical curve-to create structure-aware neighborhoods.<n>Experiments conducted on the ABC dataset and thin-walled structure-specific datasets demonstrate that STAR-Edge outperforms existing edge detection methods.
- Score: 20.484401728812376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extracting geometric edges from unstructured point clouds remains a significant challenge, particularly in thin-walled structures that are commonly found in everyday objects. Traditional geometric methods and recent learning-based approaches frequently struggle with these structures, as both rely heavily on sufficient contextual information from local point neighborhoods. However, 3D measurement data of thin-walled structures often lack the accurate, dense, and regular neighborhood sampling required for reliable edge extraction, resulting in degraded performance. In this work, we introduce STAR-Edge, a novel approach designed for detecting and refining edge points in thin-walled structures. Our method leverages a unique representation-the local spherical curve-to create structure-aware neighborhoods that emphasize co-planar points while reducing interference from close-by, non-co-planar surfaces. This representation is transformed into a rotation-invariant descriptor, which, combined with a lightweight multi-layer perceptron, enables robust edge point classification even in the presence of noise and sparse or irregular sampling. Besides, we also use the local spherical curve representation to estimate more precise normals and introduce an optimization function to project initially identified edge points exactly on the true edges. Experiments conducted on the ABC dataset and thin-walled structure-specific datasets demonstrate that STAR-Edge outperforms existing edge detection methods, showcasing better robustness under various challenging conditions.
Related papers
- PointCFormer: a Relation-based Progressive Feature Extraction Network for Point Cloud Completion [19.503392612245474]
Point cloud completion aims to reconstruct the complete 3D shape from incomplete point clouds.<n>We introduce PointCFormer, a transformer framework optimized for robust global retention and precise local detail capture.<n>PointCFormer demonstrates state-of-the-art performance on several widely used benchmarks.
arXiv Detail & Related papers (2024-12-11T14:37:21Z) - ND-SDF: Learning Normal Deflection Fields for High-Fidelity Indoor Reconstruction [50.07671826433922]
It is non-trivial to simultaneously recover meticulous geometry and preserve smoothness across regions with differing characteristics.
We propose ND-SDF, which learns a Normal Deflection field to represent the angular deviation between the scene normal and the prior normal.
Our method not only obtains smooth weakly textured regions such as walls and floors but also preserves the geometric details of complex structures.
arXiv Detail & Related papers (2024-08-22T17:59:01Z) - Enhancing Polygonal Building Segmentation via Oriented Corners [0.3749861135832072]
This paper introduces a novel deep convolutional neural network named OriCornerNet, which directly extracts delineated building polygons from input images.
Our approach involves a deep model that predicts building footprint masks, corners, and orientation vectors that indicate directions toward adjacent corners.
Performance evaluations conducted on SpaceNet Vegas and CrowdAI-small datasets demonstrate the competitive efficacy of our approach.
arXiv Detail & Related papers (2024-07-17T01:59:06Z) - Boundary Attention: Learning curves, corners, junctions and grouping [23.467103272604906]
We present a lightweight network that infers grouping and boundaries, including curves, corners and junctions.
It operates in a bottom-up fashion, analogous to classical methods for sub-pixel edge localization and edge-linking.
Our network uses a mechanism that we call boundary attention a geometry-aware local attention operation.
arXiv Detail & Related papers (2024-01-01T19:00:55Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - GeoUDF: Surface Reconstruction from 3D Point Clouds via Geometry-guided
Distance Representation [73.77505964222632]
We present a learning-based method, namely GeoUDF, to tackle the problem of reconstructing a discrete surface from a sparse point cloud.
To be specific, we propose a geometry-guided learning method for UDF and its gradient estimation.
To extract triangle meshes from the predicted UDF, we propose a customized edge-based marching cube module.
arXiv Detail & Related papers (2022-11-30T06:02:01Z) - Curved Geometric Networks for Visual Anomaly Recognition [39.91252195360767]
Learning a latent embedding to understand the underlying nature of data distribution is often formulated in Euclidean spaces with zero curvature.
In this work, we investigate benefits of the curved space for analyzing anomalies or out-of-distribution objects in data.
arXiv Detail & Related papers (2022-08-02T01:15:39Z) - GraphFit: Learning Multi-scale Graph-Convolutional Representation for
Point Cloud Normal Estimation [31.40738037512243]
We propose a precise and efficient normal estimation method for unstructured 3D point clouds.
We learn graph convolutional feature representation for normal estimation, which emphasizes more local neighborhood geometry.
Our method outperforms competitors with the state-of-the-art accuracy on various benchmark datasets.
arXiv Detail & Related papers (2022-07-23T10:29:26Z) - PU-Flow: a Point Cloud Upsampling Networkwith Normalizing Flows [58.96306192736593]
We present PU-Flow, which incorporates normalizing flows and feature techniques to produce dense points uniformly distributed on the underlying surface.
Specifically, we formulate the upsampling process as point in a latent space, where the weights are adaptively learned from local geometric context.
We show that our method outperforms state-of-the-art deep learning-based approaches in terms of reconstruction quality, proximity-to-surface accuracy, and computation efficiency.
arXiv Detail & Related papers (2021-07-13T07:45:48Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
Network learns end-to-end mapping between spatial positions and CFD quantities.
Incompress laminar steady flow past a cylinder with various shapes for its cross section is considered.
Network predicts the flow fields hundreds of times faster than our conventional CFD.
arXiv Detail & Related papers (2020-10-15T12:15:02Z) - Dense Non-Rigid Structure from Motion: A Manifold Viewpoint [162.88686222340962]
Non-Rigid Structure-from-Motion (NRSfM) problem aims to recover 3D geometry of a deforming object from its 2D feature correspondences across multiple frames.
We show that our approach significantly improves accuracy, scalability, and robustness against noise.
arXiv Detail & Related papers (2020-06-15T09:15:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.