Random Walks in Self-supervised Learning for Triangular Meshes
- URL: http://arxiv.org/abs/2503.00816v1
- Date: Sun, 02 Mar 2025 09:45:06 GMT
- Title: Random Walks in Self-supervised Learning for Triangular Meshes
- Authors: Gal Yefet, Ayellet Tal,
- Abstract summary: This study addresses the challenge of self-supervised learning for 3D mesh analysis.<n>It uses random walks as a form of data augmentation to generate diverse representations of mesh surfaces.<n>It employs a combination of contrastive and clustering losses.
- Score: 11.19540223578237
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study addresses the challenge of self-supervised learning for 3D mesh analysis. It presents an new approach that uses random walks as a form of data augmentation to generate diverse representations of mesh surfaces. Furthermore, it employs a combination of contrastive and clustering losses. The contrastive learning framework maximizes similarity between augmented instances of the same mesh while minimizing similarity between different meshes. We integrate this with a clustering loss, enhancing class distinction across training epochs and mitigating training variance. Our model's effectiveness is evaluated using mean Average Precision (mAP) scores and a supervised SVM linear classifier on extracted features, demonstrating its potential for various downstream tasks such as object classification and shape retrieval.
Related papers
- Siamese Networks for Weakly Supervised Human Activity Recognition [2.398608007786179]
We present a model with multiple siamese networks that are trained by using only the information about the similarity between pairs of data samples without knowing the explicit labels.
The trained model maps the activity data samples into fixed size representation vectors such that the distance between the vectors in the representation space approximates the similarity of the data samples in the input space.
We evaluate the model on three datasets to verify its effectiveness in segmentation and recognition of continuous human activity sequences.
arXiv Detail & Related papers (2023-07-18T03:23:34Z) - Instance-Variant Loss with Gaussian RBF Kernel for 3D Cross-modal
Retriveal [52.41252219453429]
Existing methods treat all instances equally, applying the same penalty strength to instances with varying degrees of difficulty.
This can result in ambiguous convergence or local optima, severely compromising the separability of the feature space.
We propose an Instance-Variant loss to assign different penalty strengths to different instances, improving the space separability.
arXiv Detail & Related papers (2023-05-07T10:12:14Z) - Deep Metric Learning Assisted by Intra-variance in A Semi-supervised
View of Learning [0.0]
Deep metric learning aims to construct an embedding space where samples of the same class are close to each other, while samples of different classes are far away from each other.
This paper designs a self-supervised generative assisted ranking framework that provides a semi-supervised view of intra-class variance learning scheme for typical supervised deep metric learning.
arXiv Detail & Related papers (2023-04-21T13:30:32Z) - Synthetic-to-Real Domain Generalized Semantic Segmentation for 3D Indoor
Point Clouds [69.64240235315864]
This paper introduces the synthetic-to-real domain generalization setting to this task.
The domain gap between synthetic and real-world point cloud data mainly lies in the different layouts and point patterns.
Experiments on the synthetic-to-real benchmark demonstrate that both CINMix and multi-prototypes can narrow the distribution gap.
arXiv Detail & Related papers (2022-12-09T05:07:43Z) - PointACL:Adversarial Contrastive Learning for Robust Point Clouds
Representation under Adversarial Attack [73.3371797787823]
Adversarial contrastive learning (ACL) is considered an effective way to improve the robustness of pre-trained models.
We present our robust aware loss function to train self-supervised contrastive learning framework adversarially.
We validate our method, PointACL on downstream tasks, including 3D classification and 3D segmentation with multiple datasets.
arXiv Detail & Related papers (2022-09-14T22:58:31Z) - Dense Unsupervised Learning for Video Segmentation [49.46930315961636]
We present a novel approach to unsupervised learning for video object segmentation (VOS)
Unlike previous work, our formulation allows to learn dense feature representations directly in a fully convolutional regime.
Our approach exceeds the segmentation accuracy of previous work despite using significantly less training data and compute power.
arXiv Detail & Related papers (2021-11-11T15:15:11Z) - Solving Inefficiency of Self-supervised Representation Learning [87.30876679780532]
Existing contrastive learning methods suffer from very low learning efficiency.
Under-clustering and over-clustering problems are major obstacles to learning efficiency.
We propose a novel self-supervised learning framework using a median triplet loss.
arXiv Detail & Related papers (2021-04-18T07:47:10Z) - Deep Ordinal Regression with Label Diversity [19.89482062012177]
We propose that using several discrete data representations simultaneously can improve neural network learning.
Our approach is end-to-end differentiable and can be added as a simple extension to conventional learning methods.
arXiv Detail & Related papers (2020-06-29T08:23:43Z) - Learning from Aggregate Observations [82.44304647051243]
We study the problem of learning from aggregate observations where supervision signals are given to sets of instances.
We present a general probabilistic framework that accommodates a variety of aggregate observations.
Simple maximum likelihood solutions can be applied to various differentiable models.
arXiv Detail & Related papers (2020-04-14T06:18:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.