Improving the Transferability of Adversarial Attacks by an Input Transpose
- URL: http://arxiv.org/abs/2503.00932v1
- Date: Sun, 02 Mar 2025 15:13:41 GMT
- Title: Improving the Transferability of Adversarial Attacks by an Input Transpose
- Authors: Qing Wan, Shilong Deng, Xun Wang,
- Abstract summary: In this work, we propose an input transpose method that requires almost no additional labor and computation costs but can significantly improve the transferability of existing adversarial strategies.<n>Our exploration finds that on specific datasets, a mere $1circ$ left or right rotation might be sufficient for most adversarial examples to deceive unseen models.
- Score: 13.029909541428767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) are highly susceptible to adversarial examples--subtle perturbations applied to inputs that are often imperceptible to humans yet lead to incorrect model predictions. In black-box scenarios, however, existing adversarial examples exhibit limited transferability and struggle to effectively compromise multiple unseen DNN models. Previous strategies enhance the cross-model generalization of adversarial examples by introducing versatility into adversarial perturbations, thereby improving transferability. However, further refining perturbation versatility often demands intricate algorithm development and substantial computation consumption. In this work, we propose an input transpose method that requires almost no additional labor and computation costs but can significantly improve the transferability of existing adversarial strategies. Even without adding adversarial perturbations, our method demonstrates considerable effectiveness in cross-model attacks. Our exploration finds that on specific datasets, a mere $1^\circ$ left or right rotation might be sufficient for most adversarial examples to deceive unseen models. Our further analysis suggests that this transferability improvement triggered by rotating only $1^\circ$ may stem from visible pattern shifts in the DNN's low-level feature maps. Moreover, this transferability exhibits optimal angles that, when identified under unrestricted query conditions, could potentially yield even greater performance.
Related papers
- Towards Model Resistant to Transferable Adversarial Examples via Trigger Activation [95.3977252782181]
Adversarial examples, characterized by imperceptible perturbations, pose significant threats to deep neural networks by misleading their predictions.
We introduce a novel training paradigm aimed at enhancing robustness against transferable adversarial examples (TAEs) in a more efficient and effective way.
arXiv Detail & Related papers (2025-04-20T09:07:10Z) - Improving Transferable Targeted Attacks with Feature Tuning Mixup [12.707753562907534]
Deep neural networks (DNNs) exhibit vulnerability to adversarial examples that can transfer across different models.
We propose Feature Tuning Mixup (FTM), a novel method that enhances targeted attack transferability.
Our method achieves significant improvements over state-of-the-art methods while maintaining low computational cost.
arXiv Detail & Related papers (2024-11-23T13:18:25Z) - Bag of Tricks to Boost Adversarial Transferability [5.803095119348021]
adversarial examples generated under the white-box setting often exhibit low transferability across different models.
In this work, we find that several tiny changes in the existing adversarial attacks can significantly affect the attack performance.
Based on careful studies of existing adversarial attacks, we propose a bag of tricks to enhance adversarial transferability.
arXiv Detail & Related papers (2024-01-16T17:42:36Z) - Improving Adversarial Transferability by Stable Diffusion [36.97548018603747]
adversarial examples introduce imperceptible perturbations to benign samples, deceiving predictions.
Deep neural networks (DNNs) are susceptible to adversarial examples, which introduce imperceptible perturbations to benign samples, deceiving predictions.
We introduce a novel attack method called Stable Diffusion Attack Method (SDAM), which incorporates samples generated by Stable Diffusion to augment input images.
arXiv Detail & Related papers (2023-11-18T09:10:07Z) - Common Knowledge Learning for Generating Transferable Adversarial
Examples [60.1287733223249]
This paper focuses on an important type of black-box attacks, where the adversary generates adversarial examples by a substitute (source) model.
Existing methods tend to give unsatisfactory adversarial transferability when the source and target models are from different types of DNN architectures.
We propose a common knowledge learning (CKL) framework to learn better network weights to generate adversarial examples.
arXiv Detail & Related papers (2023-07-01T09:07:12Z) - Making Substitute Models More Bayesian Can Enhance Transferability of
Adversarial Examples [89.85593878754571]
transferability of adversarial examples across deep neural networks is the crux of many black-box attacks.
We advocate to attack a Bayesian model for achieving desirable transferability.
Our method outperforms recent state-of-the-arts by large margins.
arXiv Detail & Related papers (2023-02-10T07:08:13Z) - Improving Adversarial Transferability with Scheduled Step Size and Dual
Example [33.00528131208799]
We show that transferability of adversarial examples generated by the iterative fast gradient sign method exhibits a decreasing trend when increasing the number of iterations.
We propose a novel strategy, which uses the Scheduled step size and the Dual example (SD) to fully utilize the adversarial information near the benign sample.
Our proposed strategy can be easily integrated with existing adversarial attack methods for better adversarial transferability.
arXiv Detail & Related papers (2023-01-30T15:13:46Z) - Towards Understanding and Boosting Adversarial Transferability from a
Distribution Perspective [80.02256726279451]
adversarial attacks against Deep neural networks (DNNs) have received broad attention in recent years.
We propose a novel method that crafts adversarial examples by manipulating the distribution of the image.
Our method can significantly improve the transferability of the crafted attacks and achieves state-of-the-art performance in both untargeted and targeted scenarios.
arXiv Detail & Related papers (2022-10-09T09:58:51Z) - Comment on Transferability and Input Transformation with Additive Noise [6.168976174718275]
We analyze the relationship between transferability and input transformation with additive noise.
By adding small perturbations to a benign example, adversarial attacks successfully generate adversarial examples that lead misclassification of deep learning models.
arXiv Detail & Related papers (2022-06-18T00:52:27Z) - Adaptive Perturbation for Adversarial Attack [50.77612889697216]
We propose a new gradient-based attack method for adversarial examples.
We use the exact gradient direction with a scaling factor for generating adversarial perturbations.
Our method exhibits higher transferability and outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2021-11-27T07:57:41Z) - Exploring Transferable and Robust Adversarial Perturbation Generation
from the Perspective of Network Hierarchy [52.153866313879924]
The transferability and robustness of adversarial examples are two practical yet important properties for black-box adversarial attacks.
We propose a transferable and robust adversarial generation (TRAP) method.
Our TRAP achieves impressive transferability and high robustness against certain interferences.
arXiv Detail & Related papers (2021-08-16T11:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.